Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR15-144 | 17th April 2016 23:00

Explicit resilient functions matching Ajtai-Linial

RSS-Feed




Revision #1
Authors: Raghu Meka
Accepted on: 17th April 2016 23:00
Downloads: 965
Keywords: 


Abstract:

A Boolean function on n variables is q-resilient if for any subset of at most q variables, the function is very likely to be determined by a uniformly random assignment to the remaining n-q variables; in other words, no coalition of at most q variables has significant influence on the function. Resilient functions have been extensively studied with a variety of applications in cryptography, distributed computing, and pseudorandomness. The best known balanced resilient function on n variables due to Ajtai and Linial ([AL93]) is Omega(n/(log^2 n))-resilient. However, the construction of Ajtai and Linial is by the probabilistic method and does not give an efficiently computable function.

In this work we give an explicit monotone depth three almost-balanced Boolean function on n bits that is Omega(n/(log^2 n))-resilient matching the work of Ajtai and Linial. The best previous explicit construction due to Meka [Meka09] (which only gives a logarithmic depth function) and Chattopadhyay and Zuckermman [CZ15] were only n^{1-c}-resilient for any constant c < 1. Our construction and analysis are motivated by (and simplifies parts of) the recent breakthrough of [CZ15] giving explicit two-sources extractors for polylogarithmic min-entropy; a key ingredient in their result was the construction of explicit constant-depth resilient functions.

An important ingredient in our construction is a new randomness optimal oblivious sampler which preserves moment generating functions of sums of variables and could be useful elsewhere.


Paper:

TR15-144 | 1st September 2015 01:22

Explicit resilient functions matching Ajtai-Linial





TR15-144
Authors: Raghu Meka
Publication: 2nd September 2015 09:55
Downloads: 1381
Keywords: 


Abstract:

A Boolean function on n variables is q-resilient if for any subset of at most q variables, the function is very likely to be determined by a uniformly random assignment to the remaining n-q variables; in other words, no coalition of at most q variables has significant influence on the function. Resilient functions have been extensively studied with a variety of applications in cryptography, distributed computing, and pseudorandomness. The best known balanced resilient function on n variables due to Ajtai and Linial ([AL93]) is Omega(n/(log^2 n))-resilient. However, the construction of Ajtai and Linial is by the probabilistic method and does not give an efficiently computable function.

In this work we give an explicit monotone depth three almost-balanced Boolean function on n bits that is Omega(n/(log^2 n))-resilient matching the work of Ajtai and Linial. The best previous explicit construction due to Meka [Meka09] (which only gives a logarithmic depth function) and Chattopadhyay and Zuckermman [CZ15] were only n^{1-c}-resilient for any constant c < 1. Our construction and analysis are motivated by (and simplifies parts of) the recent breakthrough of [CZ15] giving explicit two-sources extractors for polylogarithmic min-entropy; a key ingredient in their result was the construction of explicit constant-depth resilient functions.

An important ingredient in our construction is a new randomness optimal oblivious sampler which preserves moment generating functions of sums of variables and could be useful elsewhere.



ISSN 1433-8092 | Imprint