The canonical problem that gives an exponential separation between deterministic and randomized communication complexity in the classical two-party communication model is `Equality'. In this work we show that even allowing access to an `Equality' oracle, deterministic protocols remain exponentially weaker than randomized ones. More precisely, we exhibit a total function on $n$ bits with randomized one-sided communication complexity $O(\log n)$, but such that every deterministic protocol with access to `Equality' oracle needs $\Omega(n)$ cost to compute it.
Additionally we exhibit a natural and strict infinite hierarchy within $BPP$, starting with the class $P^{EQ}$ at its bottom.
Improved lower bound from $\Omega(n/\log n)$ to $\Omega(n)$ and added a new result about a hierarchy within $BPP$.
The canonical problem that gives an exponential separation between deterministic and randomized communication complexity in the classical two-party communication model is `Equality'. In this work, we show that even allowing access to an `Equality' oracle, deterministic protocols remain exponentially weaker than randomized ones. More precisely, we exhibit a total function on $n$ bits with randomized one-sided communication complexity $O(\log n)$, but such that every deterministic protocol with access to `Equality' oracle needs $\Omega(n/\log n)$ cost to compute it.