Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR18-209 | 8th December 2018 02:27

AC0 unpredictability

RSS-Feed




TR18-209
Authors: Emanuele Viola
Publication: 8th December 2018 02:28
Downloads: 115
Keywords: 


Abstract:

We prove that for every distribution $D$ on $n$ bits with Shannon
entropy $\ge n-a$ at most $O(2^{d}a\log^{d+1}g)/\gamma{}^{5}$ of
the bits $D_{i}$ can be predicted with advantage $\gamma$ by an
AC$^{0}$ circuit of size $g$ and depth $d$ that is a function of
all the bits of $D$ except $D_{i}$. This answers a question by Meir
and Wigderson (2017) who proved a corresponding result for decision
trees.

We also show that there are distributions $D$ with entropy $\ge n-O(1)$
such that any subset of $O(n/\log n)$ bits of $D$ on can be distinguished
from uniform by a circuit of depth $2$ and size $\poly(n)$. This
separates the notions of predictability and distinguishability in
this context.



ISSN 1433-8092 | Imprint