Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR19-005 | 28th September 2021 17:54

An Exponential Lower Bound on the Sub-Packetization of MSR Codes

RSS-Feed




Revision #1
Authors: Omar Alrabiah, Venkatesan Guruswami
Accepted on: 28th September 2021 17:54
Downloads: 362
Keywords: 


Abstract:

An $(n,k,\ell)$-vector MDS code is a $\mathbb{F}$-linear subspace of $(\mathbb{F}^\ell)^n$ (for some field $\mathbb{F}$) of dimension $k\ell$, such that any $k$ (vector) symbols of the codeword suffice to determine the remaining $r=n-k$ (vector) symbols. The length $\ell$ of each codeword symbol is called the sub-packetization of the code. Such a code is called minimum storage regenerating (MSR), if any single symbol of a codeword can be recovered by downloading $\ell/r$ field elements (which is known to be the least possible) from each of the other symbols.

MSR codes are attractive for use in distributed storage systems, and by now a variety of ingenious constructions of MSR codes are available. However, they all suffer from exponentially large sub-packetization of at least $r^{k/r}$. Our main result is an almost tight lower bound showing that for an MSR code, one must have $\ell \ge \exp(\Omega(k/r))$. Previously, a lower bound of $\approx \exp(\sqrt{k/r})$, and a tight lower bound for a restricted class of optimal access MSR codes, were known. Our work settles a key question concerning MSR codes that has received much attention, with a short proof hinging on one key definition that is somewhat inspired by Galois theory.



Changes to previous version:

We improve the exponent in Theorem 1 by a factor of 2(r-1)/r by introducing Lemma 5 and Corollary 6.


Paper:

TR19-005 | 16th January 2019 20:35

An Exponential Lower Bound on the Sub-Packetization of MSR Codes





TR19-005
Authors: Omar Alrabiah, Venkatesan Guruswami
Publication: 16th January 2019 20:36
Downloads: 918
Keywords: 


Abstract:

An $(n,k,\ell)$-vector MDS code is a $\mathbb{F}$-linear subspace of $(\mathbb{F}^\ell)^n$ (for some field $\mathbb{F}$) of dimension $k\ell$, such that any $k$ (vector) symbols of the codeword suffice to determine the remaining $r=n-k$ (vector) symbols. The length $\ell$ of each codeword symbol is called the sub-packetization of the code. Such a code is called minimum storage regenerating (MSR), if any single symbol of a codeword can be recovered by downloading $\ell/r$ field elements (which is known to be the least possible) from each of the other symbols.

MSR codes are attractive for use in distributed storage systems, and by now a variety of ingenious constructions of MSR codes are available. However, they all suffer from exponentially large sub-packetization of at least $r^{k/r}$. Our main result is an almost tight lower bound showing that for an MSR code, one must have $\ell \ge \exp(\Omega(k/r))$. Previously, a lower bound of $\approx \exp(\sqrt{k/r})$, and a tight lower bound for a restricted class of optimal access MSR codes, were known. Our work settles a key question concerning MSR codes that has received much attention, with a short proof hinging on one key definition that is somewhat inspired by Galois theory.



ISSN 1433-8092 | Imprint