Revision #1 Authors: Siddharth Iyer, Anup Rao, Victor Reis, Thomas Rothvoss, Amir Yehudayoff

Accepted on: 19th July 2021 19:41

Downloads: 480

Keywords:

We give tight bounds on the degree $\ell$ homogenous parts $f_\ell$ of a bounded function $f$ on the cube. We show that if $f: \{\pm 1\}^n \rightarrow [-1,1]$ has degree $d$, then $\| f_\ell \|_\infty$ is bounded by $d^\ell/\ell!$, and $\| \hat{f}_\ell \|_1$ is bounded by $d^\ell e^{{\ell+1 \choose 2}} n^{\frac{\ell-1}{2}}$. We describe applications to pseudorandomness and learning theory. We use similar methods to generalize the classical Pisier's inequality from convex analysis. Our analysis involves properties of real-rooted polynomials that may be useful elsewhere.

TR21-102 Authors: Siddharth Iyer, Anup Rao, Victor Reis, Thomas Rothvoss, Amir Yehudayoff

Publication: 13th July 2021 20:55

Downloads: 481

Keywords:

We give tight bounds on the degree $\ell$ homogenous parts $f_\ell$ of a bounded function $f$ on the cube. We show that if $f: \{\pm 1\}^n \rightarrow [-1,1]$ has degree $d$, then $\| f_\ell \|_\infty$ is bounded by $d^\ell/\ell!$, and $\| \hat{f}_\ell \|_1$ is bounded by $d^\ell e^{{\ell+1 \choose 2}} n^{\frac{\ell-1}{2}}$. We describe applications to pseudorandomness and learning theory. We use similar methods to generalize the classical Pisier's inequality from convex analysis. Our analysis involves properties of real-rooted polynomials that may be useful elsewhere.