Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR22-101 | 29th August 2023 18:30

A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation

RSS-Feed




Revision #1
Authors: Omar Alrabiah, Venkatesan Guruswami, Pravesh Kothari, Peter Manohar
Accepted on: 29th August 2023 18:30
Downloads: 224
Keywords: 


Abstract:

A code $C \colon \{0,1\}^k \to \{0,1\}^n$ is a $q$-locally decodable code ($q$-LDC) if one can recover any chosen bit $b_i$ of the message $b \in \{0,1\}^k$ with good confidence by randomly querying the encoding $x = C(b)$ on at most $q$ coordinates. Existing constructions of $2$-LDCs achieve $n = \exp(O(k))$, and lower bounds show that this is in fact tight. However, when $q = 3$, far less is known: the best constructions achieve $n = \exp(k^{o(1)})$, while the best known results only show a quadratic lower bound $n \geq \tilde{\Omega}(k^2)$ on the blocklength.

In this paper, we prove a near-cubic lower bound of $n \geq \tilde{\Omega}(k^3)$ on the blocklength of $3$-query LDCs. This improves on the best known prior works by a polynomial factor in $k$. Our proof relies on a new connection between LDCs and refuting constraint satisfaction problems with limited randomness. Our quantitative improvement builds on the new techniques for refuting semirandom instances of CSPs developed in [GKM22, HKM23] and, in particular, relies on bounding the $(\infty \to 1)$-norm of appropriate Kikuchi matrices.



Changes to previous version:

Simplified proof to save log factors, and added an appendix extending the result to small alphabets.


Paper:

TR22-101 | 15th July 2022 00:00

A Near-Cubic Lower Bound for 3-Query Locally Decodable Codes from Semirandom CSP Refutation





TR22-101
Authors: Omar Alrabiah, Venkatesan Guruswami, Pravesh Kothari, Peter Manohar
Publication: 15th July 2022 00:14
Downloads: 1281
Keywords: 


Abstract:

A code $C \colon \{0,1\}^k \to \{0,1\}^n$ is a $q$-locally decodable code ($q$-LDC) if one can recover any chosen bit $b_i$ of the message $b \in \{0,1\}^k$ with good confidence by randomly querying the encoding $x = C(b)$ on at most $q$ coordinates. Existing constructions of $2$-LDCs achieve $n = \exp(O(k))$, and lower bounds show that this is in fact tight. However, when $q = 3$, far less is known: the best constructions achieve $n = \exp(k^{o(1)})$, while the best known results only show a quadratic lower bound $n \geq \widetilde{\Omega}(k^2)$ on the blocklength.

In this paper, we prove a near-cubic lower bound of $n \geq \widetilde{\Omega}(k^3)$ on the blocklength of $3$-query LDCs. This improves on the best known prior works by a polynomial factor in $k$. Our proof relies on a new connection between LDCs and refuting constraint satisfaction problems with limited randomness. Our quantitative improvement builds on the new techniques for refuting semirandom instances of CSPs developed in [GKM22] and, in particular, relies on bounding the $(\infty \to 1)$-norm of appropriate Kikuchi matrices.



ISSN 1433-8092 | Imprint