Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR23-048 | 16th May 2025 23:25

A $d^{1/2+o(1)}$ Monotonicity Tester for Boolean Functions on $d$-Dimensional Hypergrids

RSS-Feed




Revision #1
Authors: Hadley Black, Deeparnab Chakrabarty, C. Seshadhri
Accepted on: 16th May 2025 23:25
Downloads: 22
Keywords: 


Abstract:

Monotonicity testing of Boolean functions on the hypergrid, $f:[n]^d \to \{0,1\}$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $n$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$. This complexity is independent of $n$, but has a suboptimal dependence on $d$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$ and $\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$-query testers, respectively. These testers have an almost optimal dependence on $d$, but a suboptimal polynomial dependence on $n$.

In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity
$O(\varepsilon^{-2} d^{1/2 + o(1)})$, independent of $n$. Up to the $d^{o(1)}$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $n$ yields a non-adaptive, one-sided $O(\varepsilon^{-2} d^{1/2 + o(1)})$-query monotonicity tester for Boolean functions $f:\mathbb{R}^d \to \{0,1\}$ associated with an arbitrary product measure.



Changes to previous version:

This is an updated version of the paper which has been accepted to SICOMP. Fairly significant revisions have been made throughout the paper, especially in the introduction, since the preliminary version which appeared in FOCS 2023.


Paper:

TR23-048 | 4th April 2023 02:00

A $d^{1/2+o(1)}$ Monotonicity Tester for Boolean Functions on $d$-Dimensional Hypergrids





TR23-048
Authors: Hadley Black, Deeparnab Chakrabarty, C. Seshadhri
Publication: 18th April 2023 22:15
Downloads: 492
Keywords: 


Abstract:

Monotonicity testing of Boolean functions on the hypergrid, $f:[n]^d \to \{0,1\}$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $n$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$. This complexity is independent of $n$, but has a suboptimal dependence on $d$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$ and $\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$-query testers, respectively. These testers have an almost optimal dependence on $d$, but a suboptimal polynomial dependence on $n$.

In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity
$O(\varepsilon^{-2} d^{1/2 + o(1)})$, independent of $n$. Up to the $d^{o(1)}$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $n$ yields a non-adaptive, one-sided $O(\varepsilon^{-2} d^{1/2 + o(1)})$-query monotonicity tester for Boolean functions $f:\mathbb{R}^d \to \{0,1\}$ associated with an arbitrary product measure.



ISSN 1433-8092 | Imprint