We study the interactive channel capacity of an $\epsilon$-noisy channel. The interactive channel capacity $C(\epsilon)$ is defined as the minimal ratio between the communication complexity of a problem (over a non-noisy channel), and the communication complexity of the same problem over the binary symmetric channel with noise rate $\epsilon$, where ... more >>>
We prove $n^{1+\Omega(1/p)}/p^{O(1)}$ lower bounds for the space complexity of $p$-pass streaming algorithms solving the following problems on $n$-vertex graphs:
* testing if an undirected graph has a perfect matching (this implies lower bounds for computing a maximum matching or even just the maximum matching size),
* testing if two ... more >>>
We show how to efficiently compile any given circuit $C$
into a leakage-resistant circuit $\widehat{C}$ such that any
function on the wires of $\widehat{C}$ that leaks information
during a computation $\widehat{C}(x)$ yields advantage in
computing the product of $|\widehat{C}|^{\Omega(1)}$ elements
of the alternating group $A_u$. In combination with new
compression ...
more >>>
We give a new characterization of NL as the class of languages whose members have certificates that can be verified with small error in polynomial time by finite state machines that use a constant number of random bits, as opposed to its conventional description in terms of deterministic logarithmic-space verifiers. ... more >>>
We prove that the set disjointness problem has randomized communication complexity
$\Omega(\sqrt{n}/2^{k}k)$ in the number-on-the-forehead model with $k$ parties, a quadratic improvement
on the previous bound $\Omega(\sqrt{n}/2^{k})^{1/2}$. Our result remains valid for quantum
protocols, where it is essentially tight. Proving it was an open problem since 1997, ...
more >>>
We contribute to the program of proving lower bounds on the size of branching programs solving the Tree Evaluation Problem introduced by Cook et al.(2011). Proving an exponential lower bound for the size of the non-deterministic thrifty branching programs would separate NL from P under the thrifty hypothesis. In this ... more >>>
Given a machine $U$, a $c$-short program for $x$ is a string $p$ such that $U(p)=x$ and the length of $p$ is bounded by $c$ + (the length of a shortest program for $x$). We show that for any universal machine, it is possible to compute in polynomial time on ... more >>>
We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate significantly from known Fourier-based methods, which require the underlying distribution to have some product ... more >>>
We show that if one can solve 3SUM on a set of size $n$
in time $n^{1+\epsilon}$ then one can list $t$ triangles in a
graph with $m$ edges in time $\tilde
O(m^{1+\epsilon}t^{1/3+\epsilon'})$ for any $\epsilon' > 0$. This is a
reversal of Patrascu's reduction from 3SUM to
listing triangles ...
more >>>
Communication complexity of XOR functions $f (x \oplus y)$ has attracted increasing attention in recent years, because of its connections to Fourier analysis, and its exhibition of exponential separations between classical and quantum communication complexities of total functions.However, the complexity of certain basic functions still seems elusive especially in the ... more >>>
In this paper we first show that Tester for an $F$-algebra $A$
and multilinear forms (see Testers and their Applications ECCC 2012) is equivalent to multilinear
algorithm for the product of elements in $A$
(see Algebraic
complexity theory. vol. 315, Springer-Verlag). Our
result is constructive in deterministic polynomial time. ...
more >>>
We develop a new algebraic technique that gives a simple randomized algorithm for the simple $k$-path problem with the same complexity $O^*(1.657^k)$ as in [A. Bj\"orklund. Determinant Sums for Undirected Hamiltonicity. FOCS 2010, pp. 173--182, (2010). A. Bj\"orklund, T. Husfeldt, P. Kaski, M. Koivisto. Narrow sieves for parameterized paths and ... more >>>
We consider an instance of the following problem: Parties $P_1,..., P_k$ each receive an input $x_i$, and a coordinator (distinct from each of these parties) wishes to compute $f(x_1,..., x_k)$ for some predicate $f$. We are interested in one-round protocols where each party sends a single message to the coordinator; ... more >>>
Consider two parties who wish to communicate in order to execute some interactive protocol $\pi$. However, the communication channel between them is noisy: An adversary sees everything that is transmitted over the channel and can change a constant fraction of the bits as he pleases, thus interrupting the execution of ... more >>>
Communication complexity is a central model of computation introduced by Yao in 1979, where
two players, Alice and Bob, receive inputs x and y respectively and want to compute $f(x; y)$ for some fixed
function f with the least amount of communication. Recently people have revisited the question of the ...
more >>>
Autoepistemic logic is one of the most successful formalisms for nonmonotonic reasoning. In this paper we provide a proof-theoretic analysis of sequent calculi for credulous and sceptical reasoning in propositional autoepistemic logic, introduced by Bonatti and Olivetti (ACM ToCL, 2002). We show that the calculus for credulous reasoning obeys almost ... more >>>
This brief survey gives a (roughly) self-contained overview of some complexity theoretic results about semi-algebraic proof systems and related hierarchies and the strong connections between them. The article is not intended to be a detailed survey on "Lift and Project" type optimization hierarchies (cf. Chlamtac and Tulsiani) or related proof ... more >>>
A propositional proof system based on ordered binary decision diagrams (OBDDs) was introduced by Atserias et al. Krajicek proved exponential lower bounds for a strong variant of this system using feasible interpolation, and Tveretina et al. proved exponential lower bounds for restricted versions of this system for refuting formulas derived ... more >>>
We consider the complexity of determining the winner of a finite, two-level poset game.
This is a natural question, as it has been shown recently that determining the winner of a finite, three-level poset game is PSPACE-complete.
We give a simple formula allowing one to compute the status ...
more >>>
We study the power of Arthur-Merlin probabilistic proof systems in the data stream model. We show a canonical $\mathcal{AM}$ streaming algorithm for a wide class of data stream problems. The algorithm offers a tradeoff between the length of the proof and the space complexity that is needed to verify it.
... more >>>We study the complexity of computing Boolean functions on general
Boolean domains by polynomial threshold functions (PTFs). A typical
example of a general Boolean domain is $\{1,2\}^n$. We are mainly
interested in the length (the number of monomials) of PTFs, with
their degree and weight being of secondary interest. We ...
more >>>
An error-correcting code $C \subseteq \F^n$ is called $(q,\epsilon)$-strong locally testable code (LTC) if there exists a tester that makes at most $q$ queries to the input word. This tester accepts all codewords with probability 1 and rejects all non-codewords $x\notin C$ with probability at least $\epsilon \cdot \delta(x,C)$, where ... more >>>
The approximate degree of a Boolean function $f$ is the least degree of a real polynomial
that approximates $f$ within $1/3$ at every point. We prove that the function $\bigwedge_{i=1}^{n}\bigvee_{j=1}^{n}x_{ij}$,
known as the AND-OR tree, has approximate degree $\Omega(n).$ This lower bound is tight
and closes a ...
more >>>
We consider the problem of compression for ``easy'' Boolean functions: given the truth table of an $n$-variate Boolean function $f$ computable by some \emph{unknown small circuit} from a \emph{known class} of circuits, find in deterministic time $\poly(2^n)$ a circuit $C$ (no restriction on the type of $C$) computing $f$ so ... more >>>
We study the problem of constructing explicit extractors for independent general weak random sources. Given weak sources on $n$ bits, the probabilistic method shows that there exists a deterministic extractor for two independent sources with min-entropy as small as $\log n+O(1)$. However, even to extract from a constant number of ... more >>>
We show that, over $\mathbb{C}$, if an $n$-variate polynomial of degree $d = n^{O(1)}$ is computable by an arithmetic circuit of size $s$ (respectively by an algebraic branching program of size $s$) then it can also be computed by a depth three circuit (i.e. a $\Sigma \Pi \Sigma$-circuit) of size ... more >>>
Propositional proof complexity is an area of complexity theory that addresses the question of whether the class NP is closed under complement, and also provides a theoretical framework for studying practical applications such as SAT solving.
Some of the most well-studied contradictions are random $k$-CNF formulas where each clause of ...
more >>>
We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove
super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results :
$\bullet$ As ... more >>>
Given oracle access to a Boolean function $f:\{0,1\}^n \mapsto \{0,1\}$, we design a randomized tester that takes as input a parameter $\eps>0$, and outputs {\sf Yes} if the function is monotone, and outputs {\sf No} with probability $>2/3$, if the function is $\eps$-far from monotone. That is, $f$ needs to ... more >>>
In this work we present a strong analysis of the testability of a broad, and to date the most interesting known, class of "affine-invariant'' codes. Affine-invariant codes are codes whose coordinates are associated with a vector space and are invariant under affine transformations of the coordinate space. Affine-invariant linear codes ... more >>>
We consider the following clustering with outliers problem: Given a set of points $X \subset \{-1,1\}^n$, such that there is some point $z \in \{-1,1\}^n$ for which at least $\delta$ of the points are $\epsilon$-correlated with $z$, find $z$. We call such a point $z$ a $(\delta,\epsilon)$-center of X.
In ... more >>>
The $\epsilon$-approximate degree of a Boolean function $f: \{-1, 1\}^n \to \{-1, 1\}$ is the minimum degree of a real polynomial that approximates $f$ to within $\epsilon$ in the $\ell_\infty$ norm. We prove several lower bounds on this important complexity measure by explicitly constructing solutions to the dual of an ... more >>>
Mulmuley recently gave an explicit version of Noether's Normalization lemma for ring of invariants of matrices under simultaneous conjugation, under the conjecture that there are deterministic black-box algorithms for polynomial identity testing (PIT). He argued that this gives evidence that constructing such algorithms for PIT is beyond current techniques. In ... more >>>
Small-bias probability spaces have wide applications in pseudorandomness which naturally leads to the study of their limitations. Constructing a polynomial complexity hitting set for read-once CNF formulas is a basic open problem in pseudorandomness. We show in this paper that this goal is not achievable using small-bias spaces. Namely, we ... more >>>
We obtain a strong direct product theorem for two-party bounded round communication complexity.
Let suc_r(\mu,f,C) denote the maximum success probability of an r-round communication protocol that uses
at most C bits of communication in computing f(x,y) when (x,y)~\mu.
Jain et al. [JPY12] have recently showed that if
more >>>
We introduce strong, and in many cases optimal, lower bounds for the number of queries required to nonadaptively test three fundamental properties of functions $ f : [n]^d \rightarrow \mathbb R$ on the hypergrid: monotonicity, convexity, and the Lipschitz property.
Our lower bounds also apply to the more restricted setting ...
more >>>
Santhanam (2007) proved that MA/1 does not have circuits of size $n^k$. We translate his result to the heuristic setting by proving that there is a constant $a$ such that for any $k$, there is a language in HeurMA that cannot be solved by circuits of size $n^k$ on more ... more >>>
We say that a graph with $n$ vertices is $c$-Ramsey if it does not contain either a clique or an independent set of size $c \log n$. We define a CNF formula which expresses this property for a graph $G$. We show a superpolynomial lower bound on the length of ... more >>>
For a multilinear polynomial $p(x_1,...x_n)$, over the reals, the $L1$-influence is defined to be $\sum_{i=1}^n E_x\left[\frac{|p(x)-p(x^i)|}{2} \right]$, where $x^i$ is $x$ with $i$-th bit swapped. If $p$ maps $\{-1,1\}^n$ to $[-1,1]$, we prove that the $L1$-influence of $p$ is upper bounded by a function of its degree (and independent of ... more >>>
The Parikh automaton model equips a finite automaton with integer registers and imposes a semilinear constraint on the set of their final settings. Here the theory of typed monoids is used to characterize the language classes that arise algebraically. Complexity bounds are derived, such as containment of the unambiguous Parikh ... more >>>
It is shown that complexity of implementation of prefix sums of $m$ variables (i.e. functions $x_1 \cdot \ldots\cdot x_i$, $1\le i \le m$) by circuits of depth $\lceil \log_2 m \rceil$ in the case $m=2^n$ is exactly $$3.5\cdot2^n - (8.5+3.5(n \bmod 2))2^{\lfloor n/2\rfloor} + n + 5.$$ As a consequence, ... more >>>
The two-player pebble game of Dymond–Tompa is identified as a barrier for existing techniques to save space or to speed up parallel algorithms for evaluation problems.
Many combinatorial lower bounds to study L versus NL and NC versus P under different restricted settings scale in the same way as the ... more >>>
We propose that multi-linear functions of relatively low degree
over GF(2) may be good candidates for obtaining exponential
lower bounds on the size of constant-depth Boolean circuits
(computing explicit functions).
Specifically, we propose to move gradually from linear functions
to multilinear ones, and conjecture that, for any $t\geq2$,
more >>>
We study shared randomness in the context of multi-party number-in-hand communication protocols in the simultaneous message passing model. We show that with three or more players, shared randomness exhibits new interesting properties that have no direct analogues in the two-party case.
First, we demonstrate a hierarchy of modes of shared ... more >>>
In this paper, we study the approximability of the metric Traveling Salesman Problem, one of the most widely studied problems in combinatorial optimization. Currently, the best known hardness of approximation bounds are 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and ... more >>>
We construct a new list-decodable family of asymptotically good algebraic-geometric (AG) codes over fixed alphabets. The function fields underlying these codes are constructed using class field theory, specifically Drinfeld modules of rank $1$, and designed to have an automorphism of large order that is used to ``fold" the AG code. ... more >>>
We investigate the autoreducibility and mitoticity of complete sets for several classes with respect to different polynomial-time and logarithmic-space reducibility notions.
Previous work in this area focused on polynomial-time reducibility notions. Here we obtain new mitoticity and autoreducibility results for the classes EXP and NEXP with respect to some restricted ... more >>>
We study a collection of concepts and theorems that laid the foundation of matchgate computation. This includes the signature theory of planar matchgates, and the parallel theory of characters of not necessarily planar matchgates. Our aim is to present a unified and, whenever possible, simplified account of this challenging theory. ... more >>>
In this paper we prove results regarding Boolean functions with small spectral norm (the spectral norm of $f$ is $\|\hat{f}\|_1=\sum_{\alpha}|\hat{f}(\alpha)|$). Specifically, we prove the following results for functions $f:\{0,1\}^n\to \{0,1\}$ with $\|\hat{f}\|_1=A$.
1. There is a subspace $V$ of co-dimension at most $A^2$ such that $f|_V$ is constant.
2. ... more >>>
We prove that, for all binary-input symmetric memoryless channels, polar codes enable reliable communication at rates within $\epsilon > 0$ of the Shannon capacity with a block length, construction complexity, and decoding complexity all bounded by a *polynomial* in $1/\epsilon$. Polar coding gives the *first known explicit construction* with rigorous ... more >>>
We study the complexity of approximating Boolean functions with DNFs and other depth-2 circuits, exploring two main directions: universal bounds on the approximability of all Boolean functions, and the approximability of the parity function.
In the first direction, our main positive results are the first non-trivial universal upper bounds on ...
more >>>
iven a function $f : \{0,1\}^n \to \reals$, its {\em Fourier Entropy} is defined to be $-\sum_S \fcsq{f}{S} \log \fcsq{f}{S}$, where $\fhat$ denotes the Fourier transform of $f$. This quantity arises in a number of applications, especially in the study of Boolean functions. An outstanding open question is a conjecture ... more >>>
We present a general framework for constructing high rate error correcting codes that are locally correctable (and hence locally decodable if linear) with a sublinear number of queries, based on lifting codes with respect to functions on the coordinates. Our approach generalizes the lifting of affine-invariant codes of Guo, Kopparty, ... more >>>
An approximate computation of a Boolean function by a circuit or switching network is a computation which computes the function correctly on the majority of the inputs (rather than on all inputs). Besides being interesting in their own right, lower bounds for approximate computation have proved useful in many subareas ... more >>>
Local algorithms on graphs are algorithms that run in parallel on the nodes of a graph to compute some global structural feature of the graph. Such algorithms use only local information available at nodes to determine local aspects of the global structure, while also potentially using some randomness. Recent research ... more >>>
We provide a new framework for establishing strong lower bounds on the nonnega- tive rank of matrices by means of common information, a notion previously introduced in Wyner [1975]. Common information is a natural lower bound for the nonnegative rank of a matrix and by combining it with Hellinger distance ... more >>>
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial compression algorithms for ``easy'' Boolean functions from the corresponding circuit classes. The compression problem is defined as follows: given the truth table of an $n$-variate Boolean function $f$ computable by some unknown small circuit ... more >>>
We give a function $h:\{0,1\}^n\to\{0,1\}$ such that every deMorgan formula of size $n^{3-o(1)}/r^2$ agrees with $h$ on at most a fraction of $\frac{1}{2}+2^{-\Omega(r)}$ of the inputs. This improves the previous average-case lower bound of Komargodski and Raz (STOC, 2013).
Our technical contributions include a theorem that shows that the ``expected ... more >>>
A graph property P is said to be testable if one can check if a graph is close or far from satisfying P using few random local inspections. Property P is said to be non-deterministically testable if one can supply a "certificate" to the fact that a graph satisfies P ... more >>>
A subspace design is a collection $\{H_1,H_2,\dots,H_M\}$ of subspaces of ${\mathbf F}_q^m$ with the property that no low-dimensional subspace $W$ of ${\mathbf F}_q^m$ intersects too many subspaces of the collection. Subspace designs were introduced by Guruswami and Xing (STOC 2013) who used them to give a randomized construction of optimal ... more >>>
We prove new upper bounds on the size of families of vectors in $\Z_m^n$ with restricted modular inner products, when $m$ is a large integer. More formally, if $\vec{u}_1,\ldots,\vec{u}_t \in \Z_m^n$ and $\vec{v}_1,\ldots,\vec{v}_t \in \Z_m^n$ satisfy $\langle\vec{u}_i,\vec{v}_i\rangle\equiv0\pmod m$ and $\langle\vec{u}_i,\vec{v}_j\rangle\not\equiv0\pmod m$ for all $i\neq j\in[t]$, we prove that $t \leq ... more >>>
For positive integers $n, d$, consider the hypergrid $[n]^d$ with the coordinate-wise product partial ordering denoted by $\prec$.
A function $f: [n]^d \mapsto \mathbb{N}$ is monotone if $\forall x \prec y$, $f(x) \leq f(y)$.
A function $f$ is $\varepsilon$-far from monotone if at least an $\varepsilon$-fraction of values must ...
more >>>
We investigate autoreducibility properties of complete sets for $\cNEXP$ under different polynomial reductions.
Specifically, we show under some polynomial reductions that there is are complete sets for
$\cNEXP$ that are not autoreducible. We obtain the following results:
- There is a $\reduction{p}{tt}$-complete set for $\cNEXP$ that is not $\reduction{p}{btt}$-autoreducible.
more >>>
In 1989, Babai, Nisan and Szegedy [BNS92] gave a construction of a pseudorandom generator for logspace, based on lower bounds for multiparty communication complexity. The seed length of their pseudorandom generator was $2^{\Theta(\sqrt n)}\,\,\,$, because the best lower bounds for multiparty communication complexity are relatively weak. Subsequently, pseudorandom generators for ... more >>>
Ehrenfeucht-Fraisse games and their generalizations have been quite successful in finite model theory and yield various inexpressibility results. However, for key problems such as P $\ne$ NP or NP $\ne$ coNP no progress has been achieved using the games. We show that for these problems it is already hard to ... more >>>
We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used ... more >>>
We consider three types of multiple input problems in the context of property testing.
Specifically, for a property $\Pi\subseteq\{0,1\}^n$, a proximity parameter $\epsilon$, and an integer $m$, we consider the following problems:
\begin{enumerate}
\item Direct $m$-Sum Problem for $\Pi$ and $\epsilon$:
Given a sequence of $m$ inputs, output a sequence ...
more >>>
We study the class of homogenous $\Sigma\Pi\Sigma\Pi(r)$ circuits, which are depth 4 homogenous circuits with top fanin bounded by $r$. We show that any homogenous $\Sigma\Pi\Sigma\Pi(r)$ circuit computing the permanent of an $n\times n$ matrix must have size at least $\exp\left(n^{\Omega(1/r)}\right)$.
In a recent result, Gupta, Kamath, Kayal and ... more >>>
The following two decision problems capture the complexity of
comparing integers or rationals that are succinctly represented in
product-of-exponentials notation, or equivalently, via arithmetic
circuits using only multiplication and division gates, and integer
inputs:
Input instance: four lists of positive integers:
$a_1, \ldots , a_n; \ b_1, \ldots ,b_n; \ ... more >>>
We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek (2006), as a family of unsatisfiable propositional formulas for which refutations of small size in any propositional proof system that possesses the feasible interpolation property imply an efficient *deterministic* refutation algorithm for random 3SAT with ... more >>>
We study the problem of computing the minimum vertex cover on $k$-uniform $k$-partite hypergraphs when the $k$-partition is given. On bipartite graphs ($k=2$), the minimum vertex cover can be computed in polynomial time. For $k \ge 3$, this problem is known to be NP-hard. For general $k$, the problem was ... more >>>
Resolution trees with lemmas ($\mathrm{RTL}$) are a resolution-based propositional proof system that is related to the DPLL algorithm with clause learning. Its fragments $\mathrm{RTL}(k)$ are related to clause learning algorithms where the width of learned clauses is bounded by $k$.
For every $k$ up to $O(\log n)$, an exponential separation ... more >>>
A couple of years ago, Blais, Brody, and Matulef put forward a methodology for proving lower bounds on the query complexity
of property testing via communication complexity. They provided a restricted formulation of their methodology
(via ``simple combining operators'')
and also hinted towards a more general formulation, which we spell ...
more >>>
We present logspace algorithms for the canonical labeling problem and the representation problem of Helly circular-arc (HCA) graphs. The first step is a reduction to canonical labeling and representation of interval intersection matrices. In a second step, the Delta trees employed in McConnell's linear time representation algorithm for interval matrices ... more >>>
For a predicate $f:\{-1,1\}^k \mapsto \{0,1\}$ with $\rho(f) = \frac{|f^{-1}(1)|}{2^k}$, we call the predicate strongly approximation resistant if given a near-satisfiable instance of CSP$(f)$, it is computationally hard to find an assignment such that the fraction of constraints satisfied is outside the range $[\rho(f)-\Omega(1), \rho(f)+\Omega(1)]$.
We present a characterization of ... more >>>
We give several improvements on the known hardness of the unique shortest vector problem in lattices, i.e., the problem of finding a shortest vector in a given lattice given a promise that the shortest vector is unique upto a uniqueness factor $\gamma$.
We give a deterministic reduction from the ...
more >>>
We prove that $T_{NC^1}$, the true universal first-order theory in the language containing names for all uniform $NC^1$ algorithms, cannot prove that for sufficiently large $n$, SAT is not computable by circuits of size $n^{2kc}$ where $k\geq 1, c\geq 4$ unless each function $f\in SIZE(n^k)$ can be approximated by formulas ... more >>>
We initiate a study of non-interactive proofs of proximity. These proof-systems consist of a verifier that wishes to ascertain the validity of a given statement, using a short (sublinear length) explicitly given proof, and a sublinear number of queries to its input. Since the verifier cannot even read the entire ... more >>>
We show that in the model of zero error communication complexity, direct sum fails for average communication complexity as well as for external information cost. Our example also refutes a version of a conjecture by Braverman et al. that in the zero error case amortized communication complexity equals external information ... more >>>
We prove that several measures in communication complexity are equivalent, up to polynomial factors in the logarithm of the rank of the associated matrix: deterministic communication complexity, randomized communication complexity, information cost and zero-communication cost. This shows that in order to prove the log-rank conjecture, it suffices to show that ... more >>>
Non-malleable codes provide a useful and meaningful security guarantee in situations where traditional error-correction (and even error-detection) is impossible; for example, when the attacker can completely overwrite the encoded message. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a ... more >>>
For a property $P$ and a sub-property $P'$, we say that $P$ is $P'$-partially testable with $q$ queries if there exists an algorithm that distinguishes, with high probability, inputs in $P'$ from inputs $\epsilon$-far from $P$ by using $q$ queries. There are natural properties that require many queries to test, ... more >>>
For each natural number $d$ we consider a finite structure ${\bf M}_{d}$ whose universe is the set of all $0,1$-sequence of length $n=2^{d}$, each representing a natural number in the set $\lbrace 0,1,...,2^{n}-1\rbrace$ in binary form. The operations included in the structure are the four constants $0,1,2^{n}-1,n$, multiplication and addition ... more >>>
We prove that any total boolean function of rank $r$ can be computed by a deterministic communication protocol of complexity $O(\sqrt{r} \cdot \log(r))$. Equivalently, any graph whose adjacency matrix has rank $r$ has chromatic number at most $2^{O(\sqrt{r} \cdot \log(r))}$. This gives a nearly quadratic improvement in the dependence on ... more >>>
The PCP theorem (Arora et. al., J. ACM 45(1,3)) says that every NP-proof can be encoded to another proof, namely, a probabilistically checkable proof (PCP), which can be tested by a verifier that queries only a small part of the PCP. A natural question is how large is the blow-up ... more >>>
We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is $O(\log^2 n)$, where $n$ is the length of the branching program. The previous best seed length known for this model was $n^{1/2+o(1)}$, ... more >>>
Let $\cal{P}$ be an affine invariant property of functions $\mathbb{F}_p^n \to [R]$ for fixed $p$ and $R$. We show that if $\cal{P}$ is locally testable with a constant number of queries, then one can estimate the distance of a function $f$ from $\cal{P}$ with a constant number of queries. This ... more >>>
A function $f:\Sigma^{*} \rightarrow \Sigma^{*}$ on strings is $AC^0$-pseudorandom if the pair $(x,\hat f(x))$ is $AC^0$-indistinguishable from a uniformly random pair $(y,z)$ when $x$ is chosen uniformly at random. Here $\hat f(x)$ is the string that is obtained from $f(x)$ by discarding some selected bits from $f(x)$.
It is shown ... more >>>
A bent function is a Boolean function all of whose Fourier coefficients are equal in absolute value. These functions have been extensively studied in cryptography and play an important role in cryptanalysis and design of cryptographic systems.
We study bent functions in the framework of property testing. In particular, we ...
more >>>
We study lower bounds for testing membership in families of linear/affine-invariant Boolean functions over the hypercube. A family of functions $P\subseteq \{\{0,1\}^n \rightarrow \{0,1\}\}$ is linear/affine invariant if for any $f\in P$, it is the case that $f\circ L\in P$ for any linear/affine transformation $L$ of the domain. Motivated by ... more >>>
We consider arithmetic formulas consisting of alternating layers of addition $(+)$ and multiplication $(\times)$ gates such that the fanin of all the gates in any fixed layer is the same. Such a formula $\Phi$ which additionally has the property that its formal/syntactic degree is at most twice the (total) degree ... more >>>
A propositional proof system is \emph{weakly automatizable} if there
is a polynomial time algorithm which separates satisfiable formulas
from formulas which have a short refutation in the system, with
respect to a given length bound. We show that if the resolution
proof system is weakly automatizable, ...
more >>>
Spira showed that any Boolean formula of size $s$ can be simulated in depth $O(\log s)$. We generalize Spira's theorem and show that any Boolean circuit of size $s$ with segregators of size $f(s)$ can be simulated in depth $O(f(s)\log s)$. If the segregator size is at least $s^{\varepsilon}$ for ... more >>>
We consider the proof search ("automatizability") problem for integrated learning and reasoning, a problem modeling certain kinds of data mining and common sense reasoning (Juba, 2013a). In such a problem, the approximate validity (i.e., under Valiant’s PAC-Semantics (Valiant, 2000)) of an input query formula over a background probability distribution is ... more >>>
Given a set of items and a collection of players, each with a nonnegative monotone valuation set function over the items,
the welfare maximization problem requires that every item be allocated to exactly one player,
and one wishes to maximize the sum of values obtained by the players,
as computed ...
more >>>
A signed majority function is a linear threshold function $f : \{+1,1\}^n \to \{+1,1\}$ of the form
$f(x)={\rm sign}(\sum_{i=1}^n \sigma_i x_i)$ where each $\sigma_i \in \{+1,-1\}.$ Signed majority functions are a highly symmetrical subclass of the class of all linear threshold functions, which are functions of the form ${\rm ...
more >>>
Over the years, proof systems for propositional satisfiability (SAT)
have been extensively studied. Recently, proof systems for
quantified Boolean formulas (QBFs) have also been gaining attention.
Q-resolution is a calculus enabling producing proofs from
DPLL-based QBF solvers. While DPLL has become a dominating technique
for SAT, QBF has been tackled ...
more >>>
We study the problem of constructing locally computable Universal One-Way Hash Functions (UOWHFs) $H:\{0,1\}^n \rightarrow \{0,1\}^m$. A construction with constant \emph{output locality}, where every bit of the output depends only on a constant number of bits of the input, was established by [Applebaum, Ishai, and Kushilevitz, SICOMP 2006]. However, this ... more >>>
We reduce non-deterministic time $T \ge 2^n$ to a 3SAT
instance $\phi$ of size $|\phi| = T \cdot \log^{O(1)} T$
such that there is an explicit circuit $C$ that on input
an index $i$ of $\log |\phi|$ bits outputs the $i$th
clause, and each output bit of $C$ depends on ...
more >>>
We study the arithmetic complexity of iterated matrix multiplication. We show that any multilinear homogeneous depth $4$ arithmetic formula computing the product of $d$ generic matrices of size $n \times n$, IMM$_{n,d}$, has size $n^{\Omega(\sqrt{d})}$ as long as $d \leq n^{1/10}$. This improves the result of Nisan and Wigderson (Computational ... more >>>
We present a new, more constructive proof of von Neumann's Min-Max Theorem for two-player zero-sum game --- specifically, an algorithm that builds a near-optimal mixed strategy for the second player from several best-responses of the second player to mixed strategies of the first player. The algorithm extends previous work of ... more >>>
A proof system for a language $L$ is a function $f$ such that Range$(f)$ is exactly $L$. In this paper, we look at proofsystems from a circuit complexity point of view and study proof systems that are computationally very restricted. The restriction we study is: they can be computed by ... more >>>
We design two deterministic polynomial time algorithms for variants of a problem introduced by Edmonds in 1967: determine the rank of a matrix $M$ whose entries are homogeneous linear polynomials over the integers. Given a linear subspace $\mathcal{B}$ of the $n \times n$ matrices over some field $\mathbb{F}$, we consider ... more >>>
Consider a systematic linear code where some (local) parity symbols depend on few prescribed symbols, while other (heavy) parity symbols may depend on all data symbols. Local parities allow to quickly recover any single symbol when it is erased, while heavy parities provide tolerance to a large number of simultaneous ... more >>>
Finding cliques in random graphs and the closely related ``planted'' clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve the problem for t = ... more >>>
This note studies the average-case comparison-complexity of sorting n elements when there is a known distribution on inputs and the goal is to minimize
the expected number of comparisons. We generalize Fredman's algorithm which
is a variant of insertion sort and provide a basically tight upper bound: If \mu is
more >>>
We put forward a new approach for the design of efficient multiparty protocols:
1. Design a protocol for a small number of parties (say, 3 or 4) which achieves
security against a single corrupted party. Such protocols are typically easy
to construct as they may employ techniques that do not ...
more >>>
We revisit the complexity of the satisfiability problem for quantified Boolean formulas. We show that satisfiability
of quantified CNFs of size $\poly(n)$ on $n$ variables with $O(1)$
quantifier blocks can be solved in time $2^{n-n^{\Omega(1)}}$ by zero-error
randomized algorithms. This is the first known improvement over brute force search in ...
more >>>
The standard definition of property testing endows the tester with the ability to make arbitrary queries to ``elements''
of the tested object.
In contrast, sample-based testers only obtain independently distributed elements (a.k.a. labeled samples) of the tested object.
While sample-based testers were defined by
Goldreich, Goldwasser, and Ron ({\em JACM}\/ ...
more >>>
There are three different types of nondeterminism in quantum communication: i) $\nqp$-communication, ii) $\qma$-communication, and iii) $\qcma$-communication. In this \redout{paper} we show that multiparty $\nqp$-communication can be exponentially stronger than $\qcma$-communication. This also implies an exponential separation with respect to classical multiparty nondeterministic communication complexity. We argue that there exists ... more >>>
We consider the problem of verifying the identity of a distribution: Given the description of a distribution over a discrete support $p=(p_1,p_2,\ldots,p_n)$, how many samples (independent draws) must one obtain from an unknown distribution, $q$, to distinguish, with high probability, the case that $p=q$ from the case that the total ... more >>>
A red-blue graph is a graph where every edge is colored either red or blue. The exact perfect matching problem asks for a perfect matching in a red-blue graph that has exactly a given number of red edges.
We show that for complete and bipartite complete graphs, the exact perfect ... more >>>
So-called ordered variants of the classical notions of pathwidth and treewidth are introduced and proposed as proof theoretically meaningful complexity measures for the directed acyclic graphs underlying proofs. The ordered pathwidth of a proof is shown to be roughly the same as its formula space. Length-space lower bounds for R(k)-refutations ... more >>>
We give two new characterizations of ($\F_2$-linear) locally testable error-correcting codes in terms of Cayley graphs over $\F_2^h$:
\begin{enumerate}
\item A locally testable code is equivalent to a Cayley graph over $\F_2^h$ whose set of generators is significantly larger than $h$ and has no short linear dependencies, but yields a ...
more >>>
The Minimum Distance Problem (MDP), i.e., the computational task of evaluating (exactly or approximately) the minimum distance of a linear code, is a well known NP-hard problem in coding theory. A key element in essentially all known proofs that MDP is NP-hard is the construction of a combinatorial object that ... more >>>
The relativized weak pigeonhole principle states that if at least $2n$ out of $n^2$ pigeons fly into $n$ holes, then some hole must be doubly occupied. We prove that every DNF-refutation of the CNF encoding of this principle requires size $2^{(\log n)^{3/2-\epsilon}}$ for every $\epsilon > 0$ and every sufficiently ... more >>>
Different techniques have been used to prove several transference theorems of the form "nontrivial algorithms for a circuit class C yield circuit lower bounds against C". In this survey we revisit many of these results. We discuss how circuit lower bounds can be obtained from derandomization, compression, learning, and satisfiability ... more >>>
Non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs (ICS 2010), encode messages $s$ in a manner so that tampering the codeword causes the decoder to either output $s$ or a message that is independent of $s$. While this is an impossible goal to achieve against unrestricted tampering functions, rather surprisingly ... more >>>
We draw two incomplete, biased maps of challenges in
computational complexity lower bounds. Our aim is to put
these challenges in perspective, and to present some
connections which do not seem widely known.
Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the ... more >>>
Non-malleable coding, introduced by Dziembowski, Pietrzak and Wichs (ICS 2010), aims for protecting the integrity of information against tampering attacks in situations where error-detection is impossible. Intuitively, information encoded by a non-malleable code either decodes to the original message or, in presence of any tampering, to an unrelated message. Non-malleable ... more >>>
We develop new techniques to incorporate the recently proposed ``short code" (a low-degree version of the long code) into the construction and analysis of PCPs in the classical ``Label Cover + Fourier Analysis'' framework. As a result, we obtain more size-efficient PCPs that yield improved hardness results for approximating CSPs ... more >>>
The isomorphism problem for groups given by multiplication tables (GpI) is well-known to be solvable in n^O(log n) time, but only recently has there been significant progress towards polynomial time. For example, in 2012 Babai et al. (ICALP 2012) gave a polynomial-time algorithm for groups with no abelian normal subgroups. ... more >>>
We consider the problems of deciding whether the joint distribution sampled by a given circuit satisfies certain statistical properties such as being i.i.d., being exchangeable, being pairwise independent, having two coordinates with identical marginals, having two uncorrelated coordinates, and many other variants. We give a proof that simultaneously shows all ... more >>>
We study two natural extensions of Constraint Satisfaction Problems (CSPs). {\em Balance}-Max-CSP requires that in any feasible assignment each element in the domain is used an equal number of times. An instance of {\em Hard}-Max-CSP consists of {\em soft constraints} and {\em hard constraints}, and the goal is to maximize ... more >>>
A $t$-$(n,k,\lambda)$ design over $\mathbb{F}_q$ is a collection of $k$-dimensional subspaces of $\mathbb{F}_q^n$, ($k$-subspaces, for short), called blocks, such that each $t$-dimensional subspace of $\mathbb{F}_q^n$ is contained in exactly $\lambda$ blocks. Such $t$-designs over $\mathbb{F}_q$ are the $q$-analogs of conventional combinatorial designs. Nontrivial $t$-$(n,k,\lambda)$ designs over $\mathbb{F}_q$ are currently known ... more >>>
We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. In particular, we develop a randomized algorithm for the element distinctness problem whose time $T$ and space $S$ ... more >>>
We show that the semantic cutting planes proof system has feasible interpolation via monotone real circuits. This gives an exponential lower bound on proof length in the system.
We also pose the following problem: can every multivariate non-decreasing function be expressed as a composition of non-decreasing functions in two ... more >>>
Fortnow and Klivans proved the following relationship between efficient learning algorithms and circuit lower bounds: if a class $\mathcal{C} \subseteq P/poly$ of Boolean circuits is exactly learnable with membership and equivalence queries in polynomial-time, then $EXP^{NP} \not \subseteq \mathcal{C}$ (the class $EXP^{NP}$ was subsequently improved to $P$ by Hitchcock and ... more >>>
We precisely characterize the role of private randomness in the ability of Alice to send a message to Bob while minimizing the amount of information revealed to him. We show that if using private randomness a message can be transmitted while revealing $I$ bits of information, the transmission can be ... more >>>
We provide a uniform framework for proving the collapse of the hierarchy, $NC^1(\mathcal{C})$
for an exact arithmetic class $\mathcal{C}$ of polynomial degree. These hierarchies collapses all the way down to the third level of the ${AC}^0$-hierarchy, ${AC^0_3}(\mathcal{C})$. Our main collapsing exhibits are the classes \[\mathcal{C} \in \{{C}_={NC^1}, {C}_={L}, {C}_={SAC^1}, {C}_={P}\}.\]
more >>>
We give deterministic black-box polynomial identity testing algorithms for multilinear read-once oblivious algebraic branching programs (ROABPs), in n^(lg^2 n) time. Further, our algorithm is oblivious to the order of the variables. This is the first sub-exponential time algorithm for this model. Furthermore, our result has no known analogue in the ... more >>>
Weighted counting problems are a natural generalization of counting problems where a weight is associated with every computational path and the goal is to compute the sum of the weights of all paths (instead of computing the number of accepting paths). We present a structured view on weighted counting by ... more >>>
The PCP theorem (Arora et. al., J. ACM 45(1,3)) asserts the existence of proofs that can be verified by reading a very small part of the proof. Since the discovery of the theorem, there has been a considerable work on improving the theorem in terms of the length of the ... more >>>
BosonSampling, which we proposed three years ago, is a scheme for using linear-optical networks to solve sampling problems that appear to be intractable for a classical computer. In a recent manuscript, Gogolin et al. claimed that even an ideal BosonSampling device's output would be "operationally indistinguishable" from a uniform random ... more >>>
We analyze the number of payoff queries needed to compute approximate correlated equilibria. For multi-player, binary-choice games, we show logarithmic upper and lower bounds on the query complexity of approximate correlated equilibrium. For well-supported approximate correlated equilibrium (a restriction where a player's behavior must always be approximately optimal, in the ... more >>>
We qualitatively separate semi-honest secure computation of non-trivial secure-function evaluation (SFE) functionalities from existence of key-agreement protocols.
Technically, we show the existence of an oracle (namely, PKE-oracle) relative to which key-agreement protocols exist; but it is useless for semi-honest secure realization of symmetric 2-party (deterministic finite) SFE functionalities, i.e. any ...
more >>>
We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming ball of equal volume. More precisely, we show that for all even $n \in {\mathbb N}$ there exists an explicit bijection $\psi \colon \{0,1\}^n \to \left\{ x \in \{0,1\}^{n+1} \colon |x| > n/2 \right\}$ such that for every ... more >>>
We study the complexity of detecting monomials
with special properties in the sum-product
expansion of a polynomial represented by an arithmetic
circuit of size polynomial in the number of input
variables and using only multiplication and addition.
We focus on monomial properties expressed in terms
of the number of distinct ...
more >>>
We show that any $q$-ary code with sufficiently good distance can be randomly punctured to obtain, with high probability, a code that is list decodable up to radius $1 - 1/q - \epsilon$ with near-optimal rate and list sizes.
Our results imply that ``most" Reed-Solomon codes are list decodable ... more >>>
We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorthmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with
boolean matrices with prescribed row and (uniformly bounded) column sums within simply ...
more >>>
In this paper, we study linear and quadratic Boolean functions in the context of property testing. We do this by observing that the query complexity of testing properties of linear and quadratic functions can be characterized in terms of the complexity in another model of computation called parity decision trees. ... more >>>
Let $G:\{0,1\}^n\to\{0,1\}^m$ be a pseudorandom generator. We say that a circuit implementation of $G$ is $(k,q)$-robust if for every set $S$ of at most $k$ wires anywhere in the circuit, there is a set $T$ of at most $q|S|$ outputs, such that conditioned on the values of $S$ and $T$ ... more >>>
We explore the implications of the two queries assumption, $P^{NP[1]}=P_{||}^{NP[2]}$, with respect to the polynomial hierarchy and the classes $AM$ and $MA$.
We prove the following results:
1. $P^{NP[1]}=P_{||}^{NP[2]}$ $\implies$ $AM = MA$
2. $P^{NP[1]}=P_{||}^{NP[2]}$ $\implies$ $PH \subset MA_{/1}$
3. $\exists\;B\;P^{NP[1]^B}=P^{NP[2]^B}$ and $NP^B \not\subseteq coMA^B$.
4. $P^{NP[1]}=P_{||}^{NP[2]}$ $\implies$ $PH ...
more >>>
In this paper, two structural results concerning low degree polynomials over the field $\mathbb{F}_2$ are given. The first states that for any degree d polynomial f in n variables, there exists a subspace of $\mathbb{F}_2^n$ with dimension $\Omega(n^{1/(d-1)})$ on which f is constant. This result is shown to be tight. ... more >>>
A predicate $f:\{-1,1\}^k \mapsto \{0,1\}$ with $\rho(f) = \frac{|f^{-1}(1)|}{2^k}$ is called {\it approximation resistant} if given a near-satisfiable instance of CSP$(f)$, it is computationally hard to find an assignment that satisfies at least $\rho(f)+\Omega(1)$ fraction of the constraints.
We present a complete characterization of approximation resistant predicates under the ... more >>>
In 1994, Reck et al. showed how to realize any linear-optical unitary transformation using a product of beamsplitters and phaseshifters. Here we show that any single beamsplitter that nontrivially mixes two modes, also densely generates the set of m by m unitary transformations (or orthogonal transformations, in the real case) ... more >>>
For $3 \leq q < Q$ we consider the $\text{ApproxColoring}(q,Q)$ problem of deciding for a given graph $G$ whether $\chi(G) \leq q$ or $\chi(G) \geq Q$. It was show in [DMR06] that the problem $\text{ApproxColoring}(q,Q)$ is NP-hard for $q=3,4$ and arbitrary large constant $Q$ under variants of the Unique Games ... more >>>
The ordering principle states that every finite linear order has a least element. We show that, in the relativized setting, the surjective weak pigeonhole principle for polynomial time functions does not prove a Herbrandized version of the ordering principle over $\mathrm{T}^1_2$. This answers an open question raised in [Buss, Ko{\l}odziejczyk ... more >>>
We give a deterministic #SAT algorithm for de Morgan formulas of size up to $n^{2.63}$, which runs in time $2^{n-n^{\Omega(1)}}$. This improves upon the deterministic #SAT algorithm of \cite{CKKSZ13}, which has similar running time but works only for formulas of size less than $n^{2.5}$.
Our new algorithm is based on ... more >>>
We establish a generic form of hardness amplification for the approximability of constant-depth Boolean circuits by polynomials. Specifically, we show that if a Boolean circuit cannot be pointwise approximated by low-degree polynomials to within constant error in a certain one-sided sense, then an OR of disjoint copies of that circuit ... more >>>
{\em Does derandomization of probabilistic algorithms become easier when the number of ``bad'' random inputs is extremely small?}
In relation to the above question, we put forward the following {\em quantified derandomization challenge}:
For a class of circuits $\cal C$ (e.g., P/poly or $AC^0,AC^0[2]$) and a bounding function $B:\N\to\N$ (e.g., ...
more >>>
In recent years, a very exciting and promising method for proving lower bounds for arithmetic circuits has been proposed. This method combines the method of {\it depth reduction} developed in the works of Agrawal-Vinay [AV08], Koiran [Koi12] and Tavenas [Tav13], and the use of the shifted partial derivative complexity measure ... more >>>
We show that several quantum circuit families can be simulated efficiently classically if it is promised that their output distribution is approximately sparse i.e. the distribution is close to one where only a polynomially small, a priori unknown subset of the measurement probabilities are nonzero. Classical simulations are thereby obtained ... more >>>
Constructing pseudorandom generators for low degree polynomials has received a considerable attention in the past decade. Viola [CC 2009], following an exciting line of research, constructed a pseudorandom generator for degree d polynomials in n variables, over any prime field. The seed length used is $O(d \log{n} + d 2^d)$, ... more >>>
We give a general reduction of lengths-of-proofs lower bounds for
constant depth Frege systems in DeMorgan language augmented by
a connective counting modulo a prime $p$
(the so called $AC^0[p]$ Frege systems)
to computational complexity
lower bounds for search tasks involving search trees branching upon
values of linear maps on ...
more >>>
We show that
derandomizing polynomial identity testing over an arbitrary finite
field implies that NEXP does not have polynomial size boolean
circuits. In other words, for any finite field F(q) of size q,
$PIT_q\in NSUBEXP\Rightarrow NEXP\not\subseteq P/poly$, where
$PIT_q$ is the polynomial identity testing problem over F(q), and
NSUBEXP is ...
more >>>
Common information was introduced by Wyner as a measure of dependence of two
random variables. This measure has been recently resurrected as a lower bound on the logarithm of the nonnegative rank of a nonnegative matrix. Lower bounds on nonnegative rank have important applications to several areas such
as communication ...
more >>>
We prove the following hardness result for a natural promise variant of the classical CNF-satisfiability problem: Given a CNF-formula where each clause has width $w$ and the guarantee that there exists an assignment satisfying at least $g = \lceil \frac{w}{2}\rceil -1$ literals in each clause, it is NP-hard to find ... more >>>
We prove that 3-query linear locally correctable codes over the Reals of dimension $d$ require block length $n>d^{2+\lambda}$ for some fixed, positive $\lambda >0$. Geometrically, this means that if $n$ vectors in $R^d$ are such that each vector is spanned by a linear number of disjoint triples of others, then ... more >>>
A 1976 theorem of Chaitin, strengthening a 1969 theorem of Meyer,says that infinitely many lengths n have a paucity of trivial strings (only a bounded number of strings of length n having trivially low plain Kolmogorov complexities). We use the probabilistic method to give a new proof of this fact. ... more >>>
We consider the complexity of the firefighter problem where ${b \geq 1}$ firefighters are available at each time step. This problem is proved NP-complete even on trees of degree at most three and budget one (Finbow et al. 2007) and on trees of bounded degree $b+3$ for any fixed budget ... more >>>
For Boolean functions computed by de Morgan formulas of subquadratic size or read-once de Morgan formulas, we prove a sharp concentration of the Fourier mass on ``small-degree'' coefficients. For a Boolean function $f:\{0,1\}^n\to\{1,-1\}$ computable by a de Morgan formula of size $s$, we show that
\[
\sum_{A\subseteq [n]\; :\; |A|>s^{1/\Gamma ...
more >>>
We study the query complexity of Weak Parity: the problem of computing the parity of an n-bit input string, where one only has to succeed on a 1/2+eps fraction of input strings, but must do so with high probability on those inputs where one does succeed. It is well-known that ... more >>>
How can we trust results computed by a third party, or the integrity of data stored by such a party? This is a classic question in systems security, and it is particularly relevant in the context of cloud computing.
Various solutions have been proposed that make assumptions about the class ... more >>>
An affine-invariant property over a finite field is a property of functions over F_p^n that is closed under all affine transformations of the domain. This class of properties includes such well-known beasts as low-degree polynomials, polynomials that nontrivially factor, and functions of low spectral norm. The last few years has ... more >>>
We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka, the “short code” of Barak et. al. [FOCS 2012]) and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code for inapproximability results.
In particular, we prove quasi-NP-hardness of the following problems on ... more >>>
In this paper we study the fractional block sensitivityof Boolean functions. Recently, Tal (ITCS, 2013) and
Gilmer, Saks, and Srinivasan (CCC, 2013) independently introduced this complexity measure, denoted by $fbs(f)$, and showed
that it is equal (up to a constant factor) to the randomized certificate complexity, denoted by $RC(f)$, which ...
more >>>
We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance $k(n)$ Connectivity, which asks whether two specified nodes in a graph of size $n$ are connected by a path of length at most $k(n)$. This problem is solvable (by ... more >>>
We construct an explicit family of linear rank-metric codes over any field ${\mathbb F}_h$ that enables efficient list decoding up to a fraction $\rho$ of errors in the rank metric with a rate of $1-\rho-\epsilon$, for any desired $\rho \in (0,1)$ and $\epsilon > 0$. Previously, a Monte Carlo construction ... more >>>
Let $g: \{-1,1\}^k \to \{-1,1\}$ be any Boolean function and $q_1,\dots,q_k$ be any degree-2 polynomials over $\{-1,1\}^n.$ We give a \emph{deterministic} algorithm which, given as input explicit descriptions of $g,q_1,\dots,q_k$ and an accuracy parameter $\eps>0$, approximates \[
\Pr_{x \sim \{-1,1\}^n}[g(\sign(q_1(x)),\dots,\sign(q_k(x)))=1] \]
to within an additive $\pm \eps$. For any constant ...
more >>>
We give a {\em deterministic} algorithm for approximately computing the fraction of Boolean assignments that satisfy a degree-$2$ polynomial threshold function. Given a degree-2 input polynomial $p(x_1,\dots,x_n)$ and a parameter $\eps > 0$, the algorithm approximates
\[
\Pr_{x \sim \{-1,1\}^n}[p(x) \geq 0]
\]
to within an additive $\pm \eps$ in ...
more >>>
We give a deterministic algorithm for
approximately counting satisfying assignments of a degree-$d$ polynomial threshold function
(PTF).
Given a degree-$d$ input polynomial $p(x_1,\dots,x_n)$ over $\mathbb{R}^n$
and a parameter $\epsilon > 0$, our algorithm approximates
$
\mathbf{P}_{x \sim \{-1,1\}^n}[p(x) \geq 0]
$
to within an additive $\pm \epsilon$ in time $O_{d,\epsilon}(1)\cdot ...
more >>>
The depth-$3$ model has recently gained much importance, as it has become a stepping-stone to understanding general arithmetic circuits. Its restriction to multilinearity has known exponential lower bounds but no nontrivial blackbox identity tests. In this paper we take a step towards designing such hitting-sets. We define a notion of ... more >>>
We give a length-efficient puncturing of Reed-Muller codes which preserves its distance properties. Formally, for the Reed-Muller code encoding $n$-variate degree-$d$ polynomials over ${\mathbb F}_q$ with $q \ge \Omega(d/\delta)$, we present an explicit (multi)-set $S \subseteq {\mathbb F}_q^n$ of size $N=\mathrm{poly}(n^d/\delta)$ such that every nonzero polynomial vanishes on at most ... more >>>
Consider any Boolean function $F(X_1,\ldots,X_N)$ that has more than $2^{-N^{d}}$ satisfying assignments and that can be expressed by a CNF formula with at most $N^{1+e}$ clauses for some $d>0$ and $e>0$ such that $d+e$ is less than $1$ (*). Then how many variables do we need to fix in order ... more >>>
We present improved uniform TC$^0$ circuits for division, matrix powering, and related problems, where the improvement is in terms of ``majority depth'' (initially studied by Maciel and Therien). As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic circuits, which are known to lie in ... more >>>
The paper [Harry Buhrman, Michal Koucky, Nikolay Vereshchagin. Randomized Individual Communication Complexity. IEEE Conference on Computational Complexity 2008: 321-331] considered communication complexity of the following problem. Alice has a binary string $x$ and Bob a binary string $y$, both of length $n$, and they want to compute or approximate
more >>>
A direct product is a function of the form $g(x_1,\ldots,x_k)=(g_1(x_1),\ldots,g_k(x_k))$. We show that the direct product property is locally testable with $2$ queries, that is, a canonical two-query test distinguishes between direct products and functions that are from direct products with constant probability.
This local testing question comes up ... more >>>
We introduce {\em online interactive proofs} (OIP), which are a hierarchy of communication complexity models that involve both randomness and nondeterminism (thus, they belong to the Arthur--Merlin family), but are {\em online} in the sense that the basic communication flows from Alice to Bob alone. The complexity classes defined by ... more >>>
In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree $n$ in $n^2$ variables such that any homogeneous depth 4 arithmetic circuit computing it must have size $n^{\Omega(\log \log n)}$.
Our results extend ... more >>>
Some computational problems seem to have a certain "structure" that is manifested in non-trivial algorithmic properties, while others are more "unstructured" in the sense that they are either "very easy" or "very hard". I survey some of the known results and open questions about this classification and its connections to ... more >>>
We construct a 1-round delegation scheme (i.e., argument-system) for every language computable in time t=t(n), where the running time of the prover is poly(t) and the running time of the verifier is n*polylog(t). In particular, for every language in P we obtain a delegation scheme with almost linear time verification. ... more >>>
We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a *combining algorithm* -- an algorithm that maps a distribution over solutions into a (possibly ... more >>>
Motivated by the fundamental lower bounds questions in proof complexity, we investigate the complexity of generating identities of matrix rings, and related problems. Specifically, for a field $\mathbb{F}$ let $A$ be a non-commutative (associative) $\mathbb{F}$-algebra (e.g., the algebra Mat$_d(\mathbb{F})\;$ of $d\times d$ matrices over $\mathbb{F}$). We say that a non-commutative ... more >>>
We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.
more >>>We define a new property testing model for algorithms that do not have arbitrary query access to the input, but must instead traverse it in a manner that respects the underlying data structure in which it is stored. In particular, we consider the case when the underlying data structure is ... more >>>
We study the autoreducibility and mitoticity of complete sets for NP and other complexity classes, where the main focus is on logspace reducibilities. In particular, we obtain:
- For NP and all other classes of the PH: each logspace many-one-complete set is logspace Turing-autoreducible.
- For P, the delta-levels of ...
more >>>
We give new characterizations and lower bounds relating classes in the communication complexity polynomial hierarchy and circuit complexity to limited memory communication models.
We introduce the notion of rectangle overlay complexity of a function $f: \{0,1\}^n\times \{0,1\}^n\to\{0,1\}$. This is a natural combinatorial complexity measure in terms of combinatorial rectangles in ... more >>>
One of the major open problems in complexity theory is proving super-polynomial lower bounds for circuits with logarithmic depth (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}_1~$). This problem is interesting for two reasons: first, it is tightly related to understanding the power of parallel computation and of small-space computation; second, it is one of the ... more >>>
A Boolean function is called vertex-transitive, if the partition of the Boolean cube into the preimage of 0 and the preimage of 1 is invariant under a vertex-transitive group of isometric transformations of the Boolean cube. Several constructions of vertex-transitive functions and some of their properties are presented.