Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



TR12-158 | 14th November 2012 22:31

Optimal Hitting Sets for Combinatorial Shapes


Authors: Aditya Bhaskara, Devendra Desai, Srikanth Srinivasan
Publication: 19th November 2012 20:36
Downloads: 2517


We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) and Rabani and Shpilka (SICOMP 2010), we construct hitting sets for Combinatorial Shapes of size polynomial in the alphabet, dimension, and the inverse of the error parameter. This is optimal up to polynomial factors. The best previous hitting sets came from the Pseudorandom Generator construction of Gopalan et al., and in particular had size that was quasipolynomial in the inverse of the error parameter.

Our construction builds on natural variants of the constructions of Linial et al. and Rabani and Shpilka. In the process, we construct fractional perfect hash families and hitting sets for combinatorial rectangles with stronger guarantees. These might be of independent interest.

ISSN 1433-8092 | Imprint