Weizmann Logo
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



TR14-034 | 3rd March 2014 13:28

On the complexity of trial and error for constraint satisfaction problems



In a recent work of Bei, Chen and Zhang (STOC 2013), a trial and error model of computing was introduced, and applied to some constraint satisfaction problems. In this model the input is hidden by an oracle which, for a candidate assignment, reveals some information about a violated constraint if the assignment is not satisfying.
In this paper we initiate a systematic study of constraint satisfaction problems in the trial and error model. To achieve this, we first adopt a formal framework for CSPs, and based on this framework we define several types of revealing oracles. Our main contribution is to develop a transfer theorem for each type of the revealing oracle, under a broad class of parameters. To any hidden CSP with a specific type of revealing oracle, the transfer theorem associates another, potentially harder CSP in the normal setting, such that their complexities are polynomial time equivalent. This in principle transfers the study of a large class of hidden CSPs, possibly with a promise on the instances, to the study of CSPs in the normal setting. We then apply the transfer theorems to get polynomial-time algorithms or hardness results for hidden CSPs, including satisfaction problems, monotone graph properties, isomorphism problems, and the exact version of the Unique Games problem. Most of the proofs of these results are short and straightforward, which exhibits the power of the transfer theorems.

ISSN 1433-8092 | Imprint