Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #2 to TR15-177 | 27th January 2016 17:30

Bipartite Perfect Matching is in quasi-NC

RSS-Feed




Revision #2
Authors: Stephen A. Fenner, Rohit Gurjar, Thomas Thierauf
Accepted on: 27th January 2016 17:30
Downloads: 1600
Keywords: 


Abstract:

We show that the bipartite perfect matching problem is in quasi-NC$^2$. That is, it has uniform circuits of quasi-polynomial size $n^{O(\log n)}$ and $O(\log^2 n)$ depth. Previously, only an exponential upper bound was known on the size of such circuits with poly-logarithmic depth.

We obtain our result by an almost complete derandomization of the famous Isolation Lemma when applied to yield an efficient randomized parallel algorithm for the bipartite perfect matching problem.



Changes to previous version:

Changes to Revision#1: proof of Lemma 3.4 modified.

Changes to the version#0: Simpler construction of the Isolating weight assignment where the weight size is now improved from $O(\log^3 n)$ bits to $O(\log^2n)$ bits.
Added an RNC algorithm for finding a perfect matching in bipartite graphs with only $O(\log^2n)$ random bits.


Revision #1 to TR15-177 | 23rd January 2016 23:35

Bipartite Perfect Matching is in quasi-NC





Revision #1
Authors: Stephen A. Fenner, Rohit Gurjar, Thomas Thierauf
Accepted on: 23rd January 2016 23:35
Downloads: 1630
Keywords: 


Abstract:

We show that the bipartite perfect matching problem is in quasi-NC$^2$. That is, it has uniform circuits of quasi-polynomial size and $O(\log^2 n)$ depth. Previously, only an exponential upper bound was known on the size of such circuits with poly-logarithmic depth.

We obtain our result by an almost complete derandomization of the famous Isolation Lemma when applied to yield an efficient randomized parallel algorithm for the bipartite perfect matching problem.



Changes to previous version:

Simpler construction of the Isolating weight assignment where the weight size is now improved from $O(\log^3 n)$ bits to $O(\log^2 n)$ bits.
Added an RNC algorithm for finding a perfect matching in bipartite graphs with only $O(\log^2 n)$ random bits.


Paper:

TR15-177 | 9th November 2015 14:34

Bipartite Perfect Matching is in quasi-NC





TR15-177
Authors: Stephen A. Fenner, Rohit Gurjar, Thomas Thierauf
Publication: 9th November 2015 14:47
Downloads: 2673
Keywords: 


Abstract:

We show that the bipartite perfect matching problem is in quasi-NC$^2$. That is, it has uniform circuits of quasi-polynomial size and $O(\log^2 n)$ depth. Previously, only an exponential upper bound was known on the size of such circuits with poly-logarithmic depth.

We obtain our result by an almost complete derandomization of the famous Isolation Lemma when applied to yield an efficient randomized parallel algorithm for the bipartite perfect matching problem.



ISSN 1433-8092 | Imprint