Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #1 to TR20-155 | 22nd October 2020 19:10

Log-rank and lifting for AND-functions

RSS-Feed




Revision #1
Authors: Alexander Knop, Shachar Lovett, Sam McGuire, Weiqiang Yuan
Accepted on: 22nd October 2020 19:10
Downloads: 1244
Keywords: 


Abstract:

Let $f: \{0,1\}^n \to \{0, 1\}$ be a boolean function, and let $f_\land (x, y) = f(x \land y)$ denote the AND-function of $f$, where $x \land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_\land$ and show that, up to a $\log n$ factor, it is bounded by a polynomial in the logarithm of the real rank of the communication matrix of $f_\land$. This comes within a $\log n$ factor of establishing the log-rank conjecture for AND-functions with no assumptions on $f$. Our result stands in contrast with previous results on special cases of the log-rank
conjecture, which needed significant restrictions on $f$ such as monotonicity or low $\mathbb{F}_2$-degree. Our techniques can also be used to prove (within a $\log n$ factor) a lifting theorem for AND-functions, stating that the deterministic communication complexity of $f_\land$ is polynomially-related to the AND-decision tree complexity of $f$.

The results rely on a new structural result regarding boolean functions $f:\{0, 1\}^n \to \{0, 1\}$ with a sparse polynomial representation, which may be of independent interest. We show that if the polynomial computing $f$ has few monomials then the set system of the monomials has a small hitting set, of size poly-logarithmic in its sparsity. We also establish extensions of this result to multi-linear polynomials $f:\{0,1\}^n \to \mathbb{R}$ with a larger range.



Changes to previous version:

Fixed author order.


Paper:

TR20-155 | 18th October 2020 17:09

Log-rank and lifting for AND-functions





TR20-155
Authors: Alexander Knop, Shachar Lovett, Sam McGuire, Weiqiang Yuan
Publication: 18th October 2020 17:44
Downloads: 811
Keywords: 


Abstract:

Let $f: \{0,1\}^n \to \{0, 1\}$ be a boolean function, and let $f_\land (x, y) = f(x \land y)$ denote the AND-function of $f$, where $x \land y$ denotes bit-wise AND. We study the deterministic communication complexity of $f_\land$ and show that, up to a $\log n$ factor, it is bounded by a polynomial in the logarithm of the real rank of the communication matrix of $f_\land$. This comes within a $\log n$ factor of establishing the log-rank conjecture for AND-functions with no assumptions on $f$. Our result stands in contrast with previous results on special cases of the log-rank
conjecture, which needed significant restrictions on $f$ such as monotonicity or low $\mathbb{F}_2$-degree. Our techniques can also be used to prove (within a $\log n$ factor) a lifting theorem for AND-functions, stating that the deterministic communication complexity of $f_\land$ is polynomially-related to the AND-decision tree complexity of $f$.

The results rely on a new structural result regarding boolean functions $f:\{0, 1\}^n \to \{0, 1\}$ with a sparse polynomial representation, which may be of independent interest. We show that if the polynomial computing $f$ has few monomials then the set system of the monomials has a small hitting set, of size poly-logarithmic in its sparsity. We also establish extensions of this result to multi-linear polynomials $f:\{0,1\}^n \to \mathbb{R}$ with a larger range.



ISSN 1433-8092 | Imprint