TR23-188 Authors: Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, Kewen Wu

Publication: 28th November 2023 18:26

Downloads: 541

Keywords:

The Parameterized Inapproximability Hypothesis (PIH) asserts that no fixed parameter tractable (FPT) algorithm can distinguish a satisfiable CSP instance, parameterized by the number of variables, from one where every assignment fails to satisfy an $\varepsilon$ fraction of constraints for some absolute constant $\varepsilon > 0$. PIH plays the role of the PCP theorem in parameterized complexity. However, PIH has only been established under Gap-ETH, a very strong assumption with an inherent gap.

In this work, we prove PIH under the Exponential Time Hypothesis (ETH). This is the first proof of PIH from a gap-free assumption. Our proof is self-contained and elementary. We identify an ETH-hard CSP whose variables take vector values, and constraints are either linear or of a special parallel structure. Both kinds of constraints can be checked with constant soundness via a "parallel PCP of proximity" based on the Walsh-Hadamard code.