Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



REPORTS > DETAIL:

Paper:

TR25-010 | 11th February 2025 01:09

Towards Free Lunch Derandomization from Necessary Assumptions (and OWFs)

RSS-Feed




TR25-010
Authors: Marshall Ball, Lijie Chen, Roei Tell
Publication: 12th February 2025 09:56
Downloads: 188
Keywords: 


Abstract:

The question of optimal derandomization, introduced by Doron et. al (JACM 2022), garnered significant recent attention. Works in recent years showed conditional superfast derandomization algorithms, as well as conditional impossibility results, and barriers for obtaining superfast derandomization using certain black-box techniques.

Of particular interest is the extreme high-end, which focuses on ``free lunch'' derandomization, as suggested by Chen and Tell (FOCS 2021). This is derandomization that incurs essentially no time overhead, and errs only on inputs that are infeasible to find. Constructing such algorithms is challenging, and so far there have not been any results following the one in their initial work. In their result, their algorithm is essentially the classical Nisan-Wigderson generator, and they relied on an ad-hoc assumption asserting the existence of a function that is non-batch-computable over all polynomial-time samplable distributions.

In this work we deduce free lunch derandomization from a variety of natural hardness assumptions. In particular, we do not resort to non-batch-computability, and the common denominator for all of our assumptions is hardness over all polynomial-time samplable distributions, which is necessary for the conclusion. The main technical components in our proofs are constructions of new and superfast targeted generators, which completely eliminate the time overheads that are inherent to all previously known constructions. In particular, we present an alternative construction for the targeted generator by Chen and Tell (FOCS 2021), which is faster than the original construction, and also more natural and technically intuitive.

These contributions significantly strengthen the evidence for the possibility of free lunch derandomization, distill the required assumptions for such a result, and provide the first set of dedicated technical tools that are useful for studying the question.



ISSN 1433-8092 | Imprint