Invariance with respect to linear or affine transformations of the domain is arguably the most common symmetry exhibited by natural algebraic properties. In this work, we show that any low complexity affine-invariant property of multivariate functions over finite fields is testable with a constant number of queries. This immediately reproves, ... more >>>
We propose an abstract framework for studying search-to-decision reductions for NP. Specifically, we study the following witness finding problem: for a hidden nonempty set $W\subseteq\{0,1\}^n$, the goal is to output a witness in $W$ with constant probability by making randomized queries of the form ``is $Q\cap W$ nonempty?''\ where $Q\subseteq\{0,1\}^n$. ... more >>>
Lov\'{a}sz and Schrijver introduced several lift and project methods for $0$-$1$ integer programs, now collectively known as Lov\'{a}sz-Schrijver ($LS$) hierarchies. Several lower bounds have since been proven for the rank of various linear programming relaxations in the $LS$ and $LS_+$ hierarchies. In this paper we investigate rank bounds in the ... more >>>
In this paper we study quantum nondeterminism in multiparty communication. There are three (possibly) different types of nondeterminism in quantum computation: i) strong, ii) weak with classical proofs, and iii) weak with quantum proofs. Here we focus on the first one. A strong quantum nondeterministic protocol accepts a correct input ... more >>>
Every pseudorandom generator is in particular a one-way function. If we only consider part of the output of the
pseudorandom generator is this still one-way? Here is a general setting formalizing this question. Suppose
$G:\{0,1\}^n\rightarrow \{0,1\}^{\ell(n)}$ is a pseudorandom generator with stretch $\ell(n)> n$. Let $M_R\in\{0,1\}^{m(n)\times \ell(n)}$ be a linear ...
more >>>
Given a set of $n$ random $d$-dimensional boolean vectors with the promise that two of them are $\rho$-correlated with each other, how quickly can one find the two correlated vectors? We present a surprising and simple algorithm which, for any constant $\epsilon>0$ runs in (expected) time $d n^{\frac{3 \omega}{4}+\epsilon} poly(\frac{1}{\rho})< ... more >>>
A family of Boolean circuits $\{C_n\}_{n\geq 0}$ is called \emph{$\gamma(n)$-weakly uniform} if
there is a polynomial-time algorithm for deciding the direct-connection language of every $C_n$,
given \emph{advice} of size $\gamma(n)$. This is a relaxation of the usual notion of uniformity, which allows one
to interpolate between complete uniformity (when $\gamma(n)=0$) ...
more >>>
We develop a new method for proving explicit approximation lower bounds for TSP problems with bounded metrics improving on the best up to now known bounds. They almost match the best known bounds for unbounded metric TSP problems. In particular, we prove the best known lower bound for TSP with ... more >>>
We survey research that studies the connection between the computational complexity
of optimization problems on the one hand, and the duality gap between the primal and
dual optimization problems on the other. To our knowledge, this is the first survey that
connects the two very important areas. We further look ...
more >>>
We address the following problem: how to execute any algorithm P, for an unbounded number of executions, in the presence of an adversary who observes partial information on the internal state of the computation during executions. The security guarantee is that the adversary learns nothing, beyond P's input/output behavior.
This ... more >>>
We develop a new notion called {\it tester of a class $\cM$ of
functions} $f:\cA\to \cC$ that maps the elements $\bfa\in \cA$ in
the domain $\cA$ of the function to a finite number (the size of
the tester) of elements $\bfb_1,\ldots,\bfb_t$ in a smaller
sub-domain $\cB\subset \cA$ where the property ...
more >>>
This note refers to the effect of the proximity parameter on the operation of (standard) property testers. Its bottom-line is that, except in pathological cases, the effect of the proximity parameter is restricted to determining the query complexity of the tester. The point is that, in non-pathological cases, the mapping ... more >>>
Given a graph $G$, we consider the problem of finding the largest set
of edge-disjoint triangles contained in $G$. We show that even the
simpler case of decomposing the edges of
a sparse split graph $G$ into edge-disjoint triangles
is NP-complete. We show next that the case of a general ...
more >>>
A set of multivariate polynomials, over a field of zero or large characteristic, can be tested for algebraic independence by the well-known Jacobian criterion. For fields of other characteristic $p>0$, there is no analogous characterization known. In this paper we give the first such criterion. Essentially, it boils down to ... more >>>
Kolaitis and Kopparty have shown that for any first-order formula with
parity quantifiers over the language of graphs there is a family of
multi-variate polynomials of constant-degree that agree with the
formula on all but a $2^{-\Omega(n)}$-fraction of the graphs with $n$
vertices. The proof yields a bound on the ...
more >>>
The results of Raghavendra (2008) show that assuming Khot's Unique Games Conjecture (2002), for every constraint satisfaction problem there exists a generic semi-definite program that achieves the optimal approximation factor. This result is existential as it does not provide an explicit optimal rounding procedure nor does it allow to calculate ... more >>>
We prove the following results concerning the combinatorics of list decoding, motivated by the exponential gap between the known upper bound (of $O(1/\gamma)$) and lower bound (of $\Omega_p(\log (1/\gamma))$) for the list-size needed to decode up to radius $p$ with rate $\gamma$ away from capacity, i.e., $1-h(p)-\gamma$ (here $p\in (0,1/2)$ ... more >>>
We introduce a (new) notion of parameterized proof system. For parameterized versions of standard proof systems such as Extended Frege and Substitution Frege we compare their complexity with respect to parameterized simulations.
more >>>We study the complexity of black-box constructions of
pseudorandom functions (PRF) from one-way functions (OWF)
that are secure against non-uniform adversaries. We show
that if OWF do not exist, then given as an oracle any
(inefficient) hard-to-invert function, one can compute a
PRF in polynomial time with only $k(n)$ oracle ...
more >>>
We prove that the Shortest Vector Problem (SVP) on point lattices is NP-hard to approximate for any constant factor under polynomial time reverse unfaithful random reductions. These are probabilistic reductions with one-sided error that produce false negatives with small probability, but are guaranteed not to produce false positives regardless of ... more >>>
Loosely speaking, a proximity-oblivious (property) tester is a randomized algorithm that makes a constant number of queries to a tested object and distinguishes objects that have a predetermined property from those that lack it. Specifically, for some threshold probability $c$, objects having the property are accepted with probability at least ... more >>>
The central goal of data stream algorithms is to process massive streams of data using sublinear storage space. Motivated by work in the database community on outsourcing database and data stream processing, we ask whether the space usage of such algorithms can be further reduced by enlisting a more powerful ... more >>>
In communication complexity, two players each have an input and they wish to compute some function of the joint inputs. This has been the object of much study and a wide variety of lower bound methods have been introduced to address the problem of showing lower bounds on communication. Recently, ... more >>>
Forty years ago, Wiesner pointed out that quantum mechanics raises the striking possibility of money that cannot be counterfeited according to the laws of physics. We propose the first quantum money scheme that is (1) public-key, meaning that anyone can verify a banknote as genuine, not only the bank that ... more >>>
We consider the problem of approximating the minmax value of a multiplayer game in strategic form. We argue that in 3-player games with 0-1 payoffs, approximating the minmax value within an additive constant smaller than $\xi/2$, where $\xi = \frac{3-\sqrt5}{2} \approx 0.382$, is not possible by a polynomial time algorithm. ... more >>>
We prove that for every constant $k\ge 2$, every polynomial time bound $t$, and every polynomially small $\epsilon$, there exists a family of distributions on $k$ elements that can be sampled exactly in polynomial time but cannot be sampled within statistical distance $1-1/k-\epsilon$ in time $t$. Our proof involves reducing ... more >>>
A decade has passed since Alekhnovich and Razborov presented an algorithm that solves SAT on instances $\phi$ of size $n$ having tree-width $TW(\phi)$, using time (and space) bounded by $2^{O(TW(\phi))}n^{O(1)}$. Although there have been several papers over the ensuing years building on the work of Alekhnovich and Razborov there has ... more >>>
Can complexity classes be characterized in terms of efficient reducibility to the (undecidable) set of Kolmogorov-random strings? Although this might seem improbable, a series of papers has recently provided evidence that this may be the case. In particular, it is known that there is a class of problems $C$ defined ... more >>>
The polynomial Freiman-Ruzsa conjecture is one of the important conjectures in additive combinatorics. It asserts than one can switch between combinatorial and algebraic notions of approximate subgroups with only a polynomial loss in the underlying parameters. This conjecture has also already found several applications in theoretical computer science. Recently, Tom ... more >>>
The problem of monotonicity testing of the boolean hypercube is a classic well-studied, yet unsolved
question in property testing. We are given query access to $f:\{0,1\}^n \mapsto R$
(for some ordered range $R$). The boolean hypercube ${\cal B}^n$ has a natural partial order, denoted by $\prec$ (defined by the product ...
more >>>
Let $f:\{-1,1\}^n \to \mathbb{R}$ be a real function on the hypercube, given
by its discrete Fourier expansion, or, equivalently, represented as
a multilinear polynomial. We say that it is Boolean if its image is
in $\{-1,1\}$.
We show that every function on the hypercube with a ... more >>>
We consider the problem of finding interval representations of graphs that additionally respect given interval lengths and/or pairwise intersection lengths, which are represented as weight functions on the vertices and edges, respectively. Pe'er and Shamir proved that the problem is NP-complete if only the former are given [SIAM J. Discr. ... more >>>
Informally stated, we present here a randomized algorithm that given blackbox access to the polynomial $f$ computed by an unknown/hidden arithmetic formula $\phi$ reconstructs, on the average, an equivalent or smaller formula $\hat{\phi}$ in time polynomial in the size of its output $\hat{\phi}$.
Specifically, we consider arithmetic formulas wherein the ... more >>>
We prove new lower bounds on the encoding length of Matching Vector (MV) codes. These recently discovered families of Locally Decodable Codes (LDCs) originate in the works of Yekhanin [Yek] and Efremenko [Efr] and are the only known families of LDCs with a constant number of queries and sub-exponential encoding ... more >>>
(This is a revised version of work that was posted on arXiv in July 2010.)
We present sublinear-time (randomized) algorithms for finding simple cycles of length at least $k\geq3$ and tree-minors in bounded-degree graphs.
The complexity of these algorithms is related to the distance
of the graph from being ...
more >>>
We give a new construction of algebraic codes which are efficiently list decodable from a fraction $1-R-\epsilon$ of adversarial errors where $R$ is the rate of the code, for any desired positive constant $\epsilon$. The worst-case list size output by the algorithm is $O(1/\epsilon)$, matching the existential bound for random ... more >>>
A basic question in any computational model is how to reliably compute a given function when the inputs or intermediate computations are subject to noise at a constant rate. Ideally, one would like to use at most a constant factor more resources compared to the noise-free case. This question has ... more >>>
We show that almost all known lower bound methods for communication complexity are also lower bounds for the information complexity. In particular, we define a relaxed version of the partition bound of Jain and Klauck and prove that it lower bounds the information complexity of any function. Our relaxed partition ... more >>>
Motivated by its relation to the length of cutting plane proofs for the Maximum Biclique problem, here we consider the following communication game on a given graph G, known to both players. Let K be the maximal number of vertices in a complete bipartite subgraph of G (which is not ... more >>>
In this paper, we study the approximability of Max CSP($P$) where $P$ is a Boolean predicate. We prove that assuming Khot's $d$-to-1 Conjecture, if the set of accepting inputs of $P$ strictly contains all inputs with even (or odd) parity, then it is NP-hard to approximate Max CSP($P$) better than ... more >>>
We consider so-called ``incremental'' dynamic programming (DP) algorithms, and are interested in the number of subproblems produced by them. The standard DP algorithm for the n-dimensional Knapsack problem is incremental, and produces nK subproblems, where K is the capacity of the knapsack. We show that any incremental algorithm for this ... more >>>
There has been considerable interest lately in the complexity of distributions. Recently, Lovett and Viola (CCC 2011) showed that the statistical distance between a uniform distribution over a good code, and any distribution which can be efficiently sampled by a small bounded-depth AC0 circuit, is inverse-polynomially close to one. That ... more >>>
In this work, we study the fundamental problem of constructing interactive protocols that are robust to noise, a problem that was originally considered in the seminal works of Schulman (FOCS '92, STOC '93), and has recently regained popularity. Robust interactive communication is the interactive analogue of error correcting codes: Given ... more >>>
We study the list-decodability of multiplicity codes. These codes, which are based on evaluations of high-degree polynomials and their derivatives, have rate approaching $1$ while simultaneously allowing for sublinear-time error-correction. In this paper, we show that multiplicity codes also admit powerful list-decoding and local list-decoding algorithms correcting a large fraction ... more >>>
Probabilistically-Checkable Proofs (PCPs) form the algorithmic core that enables succinct verification of long proofs/computations in many cryptographic constructions, such as succinct arguments and proof-carrying data.
Despite the wonderful asymptotic savings they bring, PCPs are also the infamous computational bottleneck preventing these cryptographic constructions from being used in practice. This reflects ... more >>>
Over a finite field $\F_q$ the $(n,d,q)$-Reed-Muller code is the code given by evaluations of $n$-variate polynomials of total degree at most $d$ on all points (of $\F_q^n$). The task of testing if a function $f:\F_q^n \to \F_q$ is close to a codeword of an $(n,d,q)$-Reed-Muller code has been of ... more >>>
We obtain the first deterministic randomness extractors
for $n$-bit sources with min-entropy $\ge n^{1-\alpha}$
generated (or sampled) by single-tape Turing machines
running in time $n^{2-16 \alpha}$, for all sufficiently
small $\alpha > 0$. We also show that such machines
cannot sample a uniform $n$-bit input to the Inner
Product function ...
more >>>
We prove that the class of locally testable affine-invariant properties is closed under sums, intersections and "lifts". The sum and intersection are two natural operations on linear spaces of functions, where the sum of two properties is simply their sum as a vector space. The "lift" is a less natural ... more >>>
We show that sparse affine-invariant linear properties over arbitrary finite fields are locally testable with a constant number of queries. Given a finite field ${\mathbb{F}}_q$ and an extension field ${\mathbb{F}}_{q^n}$, a property is a set of functions mapping ${\mathbb{F}}_{q^n}$ to ${\mathbb{F}}_q$. The property is said to be affine-invariant if it ... more >>>
A $(k,\epsilon)$-biased sample space is a distribution over $\{0,1\}^n$ that $\epsilon$-fools every nonempty linear test of size at most $k$. Since they were introduced by Naor and Naor [SIAM J. Computing, 1993], these sample spaces have become a central notion in theoretical computer science with a variety of applications.
When ... more >>>
We prove a Chernoff-like large deviation bound on the sum of non-independent random variables that have the following dependence structure. The variables $Y_1,\ldots,Y_r$ are arbitrary Boolean functions of independent random variables $X_1,\ldots,X_m$, modulo a restriction that every $X_i$ influences at most $k$ of the variables $Y_1,\ldots,Y_r$.
more >>>A Zero-Knowledge PCP (ZK-PCP) is a randomized PCP such that the view of any (perhaps cheating) efficient verifier can be efficiently simulated up to small statistical distance. Kilian, Petrank, and Tardos (STOC '97) constructed ZK-PCPs for all languages in $NEXP$. Ishai, Mahmoody, and Sahai (TCC '12), motivated by cryptographic applications, ... more >>>
Here, we give an algorithm for deciding if the nonnegative rank of a matrix $M$ of dimension $m \times n$ is at most $r$ which runs in time $(nm)^{O(r^2)}$. This is the first exact algorithm that runs in time singly-exponential in $r$. This algorithm (and earlier algorithms) are built on ... more >>>
This paper is motivated by a conjecture that BPP can be characterized in terms of polynomial-time nonadaptive reductions to the set of Kolmogorov-random strings. In this paper we show that an approach laid out by [Allender et al] to settle this conjecture cannot succeed without significant alteration, but that it ... more >>>
We consider the problem of testing a basic property of collections of distributions: having similar means. Namely, the algorithm should accept collections of distributions in which all distributions have means that do not differ by more than some given parameter, and should reject collections that are relatively far from having ... more >>>
We study the challenging problem of learning decision lists attribute-efficiently, giving both positive and negative results.
Our main positive result is a new tradeoff between the running time and mistake bound for learning length-$k$ decision lists over $n$ Boolean variables. When the allowed running time is relatively high, our new ... more >>>
One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer a quantitative loss in parameters, and hence do not give nontrivial implications for models ... more >>>
Yao's garbled circuit construction transforms a boolean circuit $C:\{0,1\}^n\to\{0,1\}^m$
into a ``garbled circuit'' $\hat{C}$ along with $n$ pairs of $k$-bit keys, one for each
input bit, such that $\hat{C}$ together with the $n$ keys
corresponding to an input $x$ reveal $C(x)$ and no additional information about $x$.
The garbled circuit ...
more >>>
We explore the relationships between circuit complexity, the complexity of generating circuits, and circuit-analysis algorithms. Our results can be roughly divided into three parts:
1. Lower Bounds Against Medium-Uniform Circuits. Informally, a circuit class is ``medium uniform'' if it can be generated by an algorithmic process that is somewhat complex ... more >>>
Given a DNF formula $f$ on $n$ variables, the two natural size measures are the number of terms or size $s(f)$, and the maximum width of a term $w(f)$. It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be ... more >>>
We give an example of a non-commutative monotone polynomial f which can be computed by a polynomial-size non-commutative formula, but every monotone non-commutative circuit computing f must have an exponential size. In the non-commutative setting this gives, a fortiori, an exponential separation between monotone and general formulas, monotone and general ... more >>>
We give an explicit function $h:\{0,1\}^n\to\{0,1\}$ such that any deMorgan formula of size $O(n^{2.499})$ agrees with $h$ on at most $\frac{1}{2} + \epsilon$ fraction of the inputs, where $\epsilon$ is exponentially small (i.e. $\epsilon = 2^{-n^{\Omega(1)}}$). Previous lower bounds for formula size were obtained for exact computation.
The same ... more >>>
Let $\mathcal{M}$ be a bridgeless matroid on ground set $\{1,\ldots, n\}$ and $f_{\mathcal{M}}: \{0,1\}^n \to \{0, 1\}$ be the indicator function of its independent sets. A folklore fact is that $f_\mathcal{M}$ is ``evasive," i.e., $D(f_\mathcal{M}) = n$ where $D(f)$ denotes the deterministic decision tree complexity of $f.$ Here we prove ... more >>>
We develop a framework for proving lower bounds on computational problems over distributions, including optimization and unsupervised learning. Our framework is based on defining a restricted class of algorithms, called statistical algorithms, that instead of accessing samples from the input distribution can only obtain an estimate of the expectation ... more >>>
The seminal result of Impagliazzo and Rudich (STOC 1989) gave a black-box separation between one-way functions and public-key encryption: informally, a public-key encryption scheme cannot be constructed using one-way functions as the sole source of computational hardness. In addition, this implied a black-box separation between one-way functions and protocols for ... more >>>
Let two linear matroids have the same rank in matroid intersection.
A maximum linear matroid intersection (maximum linear matroid parity
set) is called a basic matroid intersection (basic matroid parity
set), if its size is the rank of the matroid. We present that
enumerating all basic matroid intersections (basic matroid ...
more >>>
Motivated by certain applications from physics, biochemistry, economics, and computer science in which the objects under investigation are unknown or not directly accessible because of various limitations, we propose a trial-and-error model to examine search problems with unknown inputs. Given a search problem with a hidden input, we are asked ... more >>>
The problem of finding a nontrivial factor of a polynomial $f(x)$ over a finite field $\mathbb{F}_q$ has many known efficient, but randomized, algorithms. The deterministic complexity of this problem is a famous open question even assuming the generalized Riemann hypothesis (GRH). In this work we improve the state of the ... more >>>
We show that (1) the Minimal False QCNF search problem (MF-search) and
the Minimal Unsatisfiable LTL formula search problem (MU-search) are FPSPACE complete because of the very expressive power of QBF/LTL, (2) we extend the PSPACE-hardness of the MF decision problem to the MU decision problem. As a consequence, we ...
more >>>
Goldreich, Sahai, and Vadhan (CRYPTO 1999) proved that the promise problem for estimating the Shannon entropy of a distribution sampled by a given circuit is NISZK-complete. We consider the analogous problem for estimating the min-entropy and prove that it is SBP-complete, even when restricted to 3-local samplers. For logarithmic-space samplers, ... more >>>
We present a moderately exponential time algorithm for the satisfiability of Boolean formulas over the full binary basis.
For formulas of size at most $cn$, our algorithm runs in time $2^{(1-\mu_c)n}$ for some constant $\mu_c>0$.
As a byproduct of the running time analysis of our algorithm,
we get strong ...
more >>>
The \emph{Chow parameters} of a Boolean function $f: \{-1,1\}^n \to \{-1,1\}$ are its $n+1$ degree-0 and degree-1 Fourier coefficients. It has been known since 1961 \cite{Chow:61, Tannenbaum:61} that the (exact values of the) Chow parameters of any linear threshold function $f$ uniquely specify $f$ within the space of all Boolean ... more >>>
Folded Reed-Solomon codes are an explicit family of codes that achieve the optimal trade-off between rate and list error-correction capability. Specifically, for any $\epsilon > 0$, Guruswami and Rudra presented an $n^{O(1/\epsilon)}$ time algorithm to list decode appropriate folded RS codes of rate $R$ from a fraction $1-R-\epsilon$ of ... more >>>
A theorem of Håstad shows that for every constraint satisfaction problem (CSP) over a fixed size domain, instances where each variable appears in at most $O(1)$ constraints admit a non-trivial approximation algorithm, in the sense that one can beat (by an additive constant) the approximation ratio achieved by the naive ... more >>>
We study local filters for two properties of functions $f:\B^d\to \mathbb{R}$: the Lipschitz property and monotonicity. A local filter with additive error $a$ is a randomized algorithm that is given black-box access to a function $f$ and a query point $x$ in the domain of $f$. Its output is a ... more >>>
A function $f(x_1, ... , x_d)$, where each input is an integer from 1 to $n$ and output is a real number, is Lipschitz if changing one of the inputs by 1 changes the output by at most 1. In other words, Lipschitz functions are not very sensitive to small ... more >>>
We define instance compressibility for parametric problems in PH and PSPACE. We observe that
the problem \Sigma_{i}CircuitSAT of deciding satisfiability of a quantified Boolean circuit with i-1 alternations of quantifiers starting with an existential uantifier is complete for parametric problems in \Sigma_{i}^{p} with respect to W-reductions, and that analogously ... more >>>
We study optimization versions of Graph Isomorphism. Given two graphs $G_1,G_2$, we are interested in finding a bijection $\pi$ from $V(G_1)$ to $V(G_2)$ that maximizes the number of matches (edges mapped to edges or non-edges mapped to non-edges). We give an $n^{O(\log n)}$ time approximation scheme that for any constant ... more >>>
In this paper we initiate the study of proof systems where verification of proofs proceeds by NC0 circuits. We investigate the question which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC0 functions. Our results show that the answer ... more >>>
In several settings derandomization is known to follow from circuit lower bounds that themselves are equivalent to the existence of pseudorandom generators. This leaves open the question whether derandomization implies the circuit lower bounds that are known to imply it, i.e., whether the ability to derandomize in *any* way implies ... more >>>
In this work we consider representations of multivariate polynomials in $F[x]$ of the form $ f(x) = Q_1(x)^{e_1} + Q_2(x)^{e_2} + ... + Q_s(x)^{e_s},$ where the $e_i$'s are positive integers and the $Q_i$'s are arbitary multivariate polynomials of bounded degree. We give an explicit $n$-variate polynomial $f$ of degree $n$ ... more >>>
We prove that a random linear code over $\mathbb{F}_q$, with probability arbitrarily close to $1$, is list decodable at radius $1-1/q-\epsilon$ with list size $L=O(1/\epsilon^2)$ and rate $R=\Omega_q(\epsilon^2/(\log^3(1/\epsilon)))$. Up to the polylogarithmic factor in $1/\epsilon$ and constant factors depending on $q$, this matches the lower bound $L=\Omega_q(1/\epsilon^2)$ for the list ... more >>>
We exhibit an explicit pseudorandom generator that stretches an $O \left( \left( w^4 \log w + \log (1/\varepsilon) \right) \cdot \log n \right)$-bit random seed to $n$ pseudorandom bits that cannot be distinguished from truly random bits by a permutation branching program of width $w$ with probability more than $\varepsilon$. ... more >>>
I discuss recent progress in developing and exploiting connections between
SAT algorithms and circuit lower bounds. The centrepiece of the article is
Williams' proof that $NEXP \not \subseteq ACC^0$, which proceeds via a new
algorithm for $ACC^0$-SAT beating brute-force search. His result exploits
a formal connection from non-trivial SAT algorithms ...
more >>>
We prove a strong limitation on the ability of entangled provers to collude in a multiplayer game. Our main result is the first nontrivial lower bound on the class MIP* of languages having multi-prover interactive proofs with entangled provers; namely MIP* contains NEXP, the class of languages decidable in non-deterministic ... more >>>
Finding a problem that is both hard to solve and hard to solve on many instances is a long standing issue
in theoretical computer science.
In this work, we prove that the Succinct Permanent $\bmod \; p$ is $NEXP$
time hard in the worst case (via randomized polynomial time ...
more >>>
We study the $\leadingones$ game, a Mastermind-type guessing game first
regarded as a test case in the complexity theory of randomized search
heuristics. The first player, Carole, secretly chooses a string $z \in \{0,1\}^n$ and a
permutation $\pi$ of $[n]$.
The goal of the second player, Paul, is to ...
more >>>
We study the covering complexity of constraint satisfaction problems (CSPs). The covering number of a CSP instance C, denoted $\nu(C)$, is the smallest number of assignments to the variables, such that each constraint is satisfied by at least one of the assignments. This covering notion describes situations in which we ... more >>>
The Sensitivity Conjecture, posed in 1994, states that the fundamental measures known as the sensitivity and block sensitivity of a Boolean function $f$, $s(f)$ and $bs(f)$ respectively, are polynomially related. It is known that $bs(f)$ is polynomially related to important measures in computer science including the decision-tree depth, polynomial degree, ... more >>>
The problem of determining whether several finite automata accept a word in common is closely related to the well-studied membership problem in transformation monoids. We raise the issue of limiting the number of final states in the automata intersection problem. For automata with two final states, we show the problem ... more >>>
Condon and Lipton (FOCS 1989) showed that the class of languages having a space-bounded interactive proof system (IPS) is a proper subset of decidable languages, where the verifier is a probabilistic Turing machine. In this paper, we show that if we use architecturally restricted verifiers instead of restricting the working ... more >>>
In this paper we deal with one-way multi-head data-independent finite automata. A $k$-head finite automaton $A$ is data-independent, if the position of every head $i$ after step $t$ in the computation on an input $w$ is a function that depends only on the length of the input $w$, on $i$ ... more >>>
We study the circuit complexity of linear transformations between Galois fields GF(2^{mn}) and their isomorphic composite fields GF((2^{m})^n). For such a transformation, we show a lower bound of \Omega(mn) on the number of gates required in any circuit consisting of constant-fan-in XOR gates, except for a class of transformations between ... more >>>
Suppose we are given an oracle that claims to approximate the permanent for most matrices $X$, where $X$ is chosen from the Gaussian ensemble (the matrix entries are i.i.d. univariate complex Gaussians). Can we test that the oracle satisfies this claim? This paper gives a polynomial-time algorithm for the task.
... more >>>A subspace-evasive set over a field ${\mathbb F}$ is a subset of ${\mathbb F}^n$ that has small intersection with any low-dimensional affine subspace of ${\mathbb F}^n$. Interest in subspace evasive sets began in the work of Pudlák and Rödl (Quaderni di Matematica 2004). More recently, Guruswami (CCC 2011) showed that ... more >>>
Tree-width is a well-studied parameter of structures that measures their similarity to a tree. Many important NP-complete problems, such as Boolean satisfiability (SAT), are tractable on bounded tree-width instances. In this paper we focus on the canonical PSPACE-complete problem QBF, the fully-quantified version of SAT. It was shown by Pan ... more >>>
We consider the problem of extracting entropy by sparse transformations, namely functions with a small number of overall input-output dependencies. In contrast to previous works, we seek extractors for essentially all the entropy without any assumption on the underlying distribution beyond a min-entropy requirement. We give two simple constructions of ... more >>>
Agrawal and Vinay (FOCS 2008) have recently shown that an exponential lower bound for depth four homogeneous circuits with bottom layer of $\times$ gates having sublinear fanin translates to an exponential lower bound for a general arithmetic circuit computing the permanent. Motivated by this, we examine the complexity of computing ... more >>>
We prove that the randomized decision tree complexity of the recursive majority-of-three is $\Omega(2.6^d)$, where $d$ is the depth of the recursion. The proof is by a bottom up induction, which is same in spirit as the one in the proof of Saks and Wigderson in their FOCS 1986 paper ... more >>>
The thesis summarizes known results in the field of NP search problems. We discuss the complexity of integer factoring in detail, and we propose new results which place the problem in known classes and aim to separate it from PLS in some sense. Furthermore, we define several new search problems.
more >>>We study the possibilities and limitations
of pseudodeterministic algorithms,
a notion put forward by Gat and Goldwasser (2011).
These are probabilistic algorithms that solve search problems
such that on each input, with high probability, they output
the same solution, which may be thought of as a canonical solution.
We consider ...
more >>>
In this paper, we introduce and develop the method of certifying polynomials for proving $\mathrm{AC}^0[\oplus]$ circuit lower bounds.
We use this method to show that Approximate Majority cannot be computed by $\mathrm{AC}^0[\oplus]$ circuits of size $n^{1+o(1)}$. This implies a separation between the power of $\mathrm{AC}^0[\oplus]$ circuits of near-linear size and ... more >>>
Given an instance $\mathcal{I}$ of a CSP, a tester for $\mathcal{I}$ distinguishes assignments satisfying $\mathcal{I}$ from those which are far from any assignment satisfying $\mathcal{I}$. The efficiency of a tester is measured by its query complexity, the number of variable assignments queried by the algorithm. In this paper, we characterize ... more >>>
Error correction and message authentication are well studied in the literature, and various efficient solutions have been suggested and analyzed. This is however not the case for data streams in which the message is very long, possibly infinite, and not known in advance to the sender. Trivial solutions for error-correcting ... more >>>
We consider the complexity of LS$_+$ refutations of unsatisfiable instances of Constraint Satisfaction Problems (CSPs) when the underlying predicate supports a pairwise independent distribution on its satisfying assignments. This is the most general condition on the predicates under which the corresponding MAX-CSP problem is known to be approximation resistant.
We ... more >>>
In this work we explore error-correcting codes derived from
the ``lifting'' of ``affine-invariant'' codes.
Affine-invariant codes are simply linear codes whose coordinates
are a vector space over a field and which are invariant under
affine-transformations of the coordinate space. Lifting takes codes
defined over a vector space of small dimension ...
more >>>
We consider a model of teaching in which the learners are consistent and have bounded state, but are otherwise arbitrary. The teacher is non-interactive and ``massively open'': the teacher broadcasts a sequence of examples of an arbitrary target concept, intended for every possible on-line learning algorithm to learn from. We ... more >>>
We formulate a new connection between instance compressibility \cite{Harnik-Naor10}), where the compressor uses circuits from a class $\C$, and correlation with
circuits in $\C$. We use this connection to prove the first lower bounds
on general probabilistic multi-round instance compression. We show that there
is no
probabilistic multi-round ...
more >>>
We construct a PCP based on the hyper-graph linearity test with 3 free queries. It has near-perfect completeness and soundness strictly less than 1/8. Such a PCP was known before only assuming the Unique Games Conjecture, albeit with soundness arbitrarily close to 1/16.
At a technical level, our ...
more >>>
We show optimal (up to constant factor) NP-hardness for Max-k-CSP over any domain,
whenever k is larger than the domain size. This follows from our main result concerning predicates
over abelian groups. We show that a predicate is approximation resistant if it contains a subgroup that
is ...
more >>>
Convex relaxations based on different hierarchies of
linear/semi-definite programs have been used recently to devise
approximation algorithms for various optimization problems. The
approximation guarantee of these algorithms improves with the number
of {\em rounds} $r$ in the hierarchy, though the complexity of solving
(or even writing down the solution for) ...
more >>>
Given an instance of a hard decision problem, a limited goal is to $compress$ that instance into a smaller, equivalent instance of a second problem. As one example, consider the problem where, given Boolean formulas $\psi^1, \ldots, \psi^t$, we must determine if at least one $\psi^j$ is satisfiable. An $OR-compression ... more >>>
We call a depth-$4$ formula $C$ $\textit{ set-depth-4}$ if there exists a (unknown) partition $X_1\sqcup\cdots\sqcup X_d$ of the variable indices $[n]$ that the top product layer respects, i.e. $C(\mathbf{x})=\sum_{i=1}^k {\prod_{j=1}^{d} {f_{i,j}(\mathbf{x}_{X_j})}}$ $ ,$ where $f_{i,j}$ is a $\textit{sparse}$ polynomial in $\mathbb{F}[\mathbf{x}_{X_j}]$. Extending this definition to any depth - we call ... more >>>
We construct a provably pseudo-free family of finite computational groups under the general integer factoring intractability assumption. Moreover, this family has exponential size. But each element of a group in our pseudo-free family is represented by many bit strings.
more >>>We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing (PIT) algorithms for read-once oblivious algebraic branching programs (ABPs). This class has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka), but prior to this work had no known such black-box algorithm. Here we ... more >>>
We describe a new pseudorandom generator for AC0. Our generator $\epsilon$-fools circuits of depth $d$ and size $M$ and uses a seed of length $\tilde O( \log^{d+4} M/\epsilon)$. The previous best construction for $d \geq 3$ was due to Nisan, and had seed length $O(\log^{2d+6} M/\epsilon)$.
A seed length of ...
more >>>
The polynomial method and the adversary method are the two main techniques to prove lower bounds on quantum query complexity, and they have so far been considered as unrelated approaches. Here, we show an explicit reduction from the polynomial method to the multiplicative adversary method. The proof goes by extending ... more >>>
We study several problems in which an {\em unknown} distribution over an {\em unknown} population of vectors needs to be recovered from partial or noisy samples, each of which nearly completely erases or obliterates the original vector. For example, consider a distribution $p$ over a population $V \subseteq \{0,1\}^n$. A ... more >>>
We devise a new combinatorial characterization for proving space lower bounds in algebraic systems like Polynomial Calculus (Pc) and Polynomial Calculus with Resolution (Pcr). Our method can be thought as a Spoiler-Duplicator game, which is capturing boolean reasoning on polynomials instead that clauses as in the case of Resolution. Hence, ... more >>>
In this survey, I discuss the general question of what evidence can we use to predict the answer for open questions in computational complexity, as well as the concrete evidence currently known for two conjectures: Khot's Unique Games Conjecture and Feige's Random 3SAT Hypothesis.
Koiran's real $\tau$-conjecture asserts that if a non-zero real polynomial can be written as $f=\sum_{i=1}^{p}\prod_{j=1}^{q}f_{ij},$
where each $f_{ij}$ contains at most $k$ monomials, then the number of distinct real roots of $f$ is polynomial in $pqk$. We show that the conjecture implies quite a strong property of the ...
more >>>
We investigate the complexity of the syntactic isomorphism problem of CNF Boolean Formulas (CSFI): given two CNF Boolean formulas $\varphi(a_{1},\ldots,a_{n})$ and $\varphi(b_{1},\ldots,b_{n})$ decide whether there exists a permutation of clauses, a permutation of literals and a bijection between their variables such that $\varphi(a_{1},\ldots,a_{n})$ and $\varphi(b_{1},\ldots,b_{n})$ become syntactically identical. We first ... more >>>
We present an iterative approach to constructing pseudorandom generators, based on the repeated application of mild pseudorandom restrictions. We use this template to construct pseudorandom generators for combinatorial rectangles and read-once CNFs and a hitting set generator for width-3 branching programs, all of which achieve near optimal seed-length even in ... more >>>
Ramsey Theorem is a cornerstone of combinatorics and logic. In its
simplest formulation it says that there is a function $r$ such that
any simple graph with $r(k,s)$ vertices contains either a clique of
size $k$ or an independent set of size $s$. We study the complexity
of proving upper ...
more >>>
Common presentations of the NP-completeness of SAT suffer
from two drawbacks which hinder the scope of this
flagship result. First, they do not apply to machines
equipped with random-access memory, also known as
direct-access memory, even though this feature is
critical in basic algorithms. Second, they incur a
quadratic blow-up ...
more >>>
We present a logspace algorithm to compute path decompositions of bounded pathwidth graphs, thus settling its complexity. Prior to our work, the best known upper bound to compute such decompositions was linear time. We also show that deciding if the pathwidth of a graph is at most a given constant ... more >>>
Let $X \subseteq \mathbb{R}^{n}$ and let ${\mathcal C}$ be a class of functions mapping $\mathbb{R}^{n} \rightarrow \{-1,1\}.$ The famous VC-Theorem states that a random subset $S$ of $X$ of size $O(\frac{d}{\epsilon^{2}} \log \frac{d}{\epsilon})$, where $d$ is the VC-Dimension of ${\mathcal C}$, is (with constant probability) an $\epsilon$-approximation for ${\mathcal C}$ ... more >>>
This work is in the line of designing efficient checkers for testing the reliability of some massive data structures. Given a sequential access to the insert/extract operations on such a structure, one would like to decide, a posteriori only, if it corresponds to the evolution of a reliable structure. In ... more >>>
In the random oracle model, the parties are given oracle access to a random member of
a (typically huge) function family, and are assumed to have unbounded computational power
(though they can only make a bounded number of oracle queries). This model provides powerful
properties that allow proving the security ...
more >>>
We introduce a new public quantum interactive proof system, namely qAM, by augmenting the verifier with a fixed-size quantum register in Arthur-Merlin game. We focus on space-bounded verifiers, and compare our new public system with private-coin interactive proof (IP) system in the same space bounds. We show that qAM systems ... more >>>
We prove an unconditional lower bound that any linear program that achieves an $O(n^{1-\epsilon})$ approximation for clique has size $2^{\Omega(n^\epsilon)}$. There has been considerable recent interest in proving unconditional lower bounds against any linear program. Fiorini et al proved that there is no polynomial sized linear program for traveling salesman. ... more >>>
During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems ... more >>>
We introduce a class of polynomials, which we call \emph{subspace polynomials} and show that the problem of explicitly constructing a rigid matrix can be reduced to the problem of explicitly constructing a small hitting set for this class. We prove that small-bias sets are hitting sets for the class of ... more >>>
We highlight the challenge of proving correlation bounds
between boolean functions and integer-valued polynomials,
where any non-boolean output counts against correlation.
We prove that integer-valued polynomials of degree $\frac 12
\log_2 \log_2 n$ have zero correlation with parity. Such a
result is false for modular and threshold polynomials.
Its proof ...
more >>>
We give new combinatorial proofs of known almost-periodicity results for sumsets of sets with small doubling in the spirit of Croot and Sisask [Geom. Funct. Anal. 2010], whose almost-periodicity lemma has had far-reaching implications in additive combinatorics. We provide an alternative (and $L^p$-norm free) point of view, which allows for ... more >>>
We construct the first Message Authentication Codes (MACs) that are existentially unforgeable against a quantum chosen message attack. These chosen message attacks model a quantum adversary’s ability to obtain the MAC on a superposition of messages of its choice. We begin by showing that a quantum secure PRF is sufficient ... more >>>
We prove that the correlation of a depth-$d$
unbounded fanin circuit of size $S$ with parity
of $n$ variables is at most $2^{-\Omega(n/(\log S)^{d-1})}$.
We study the rank of complex sparse matrices in which the supports of different columns have small intersections. The rank of these matrices, called design matrices, was the focus of a recent work by Barak et. al. (BDWY11) in which they were used to answer questions regarding point configurations. In ... more >>>
We study questions in incidence geometry where the precise position of points is `blurry' (e.g. due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more generally affine subspaces are replaced by their small neighborhood. We show that the presence of a sufficiently large number of ... more >>>
In the presence of a quantum adversary, there are two possible definitions of security for a pseudorandom function. The first, which we call standard-security, allows the adversary to be quantum, but requires queries to the function to be classical. The second, quantum-security, allows the adversary to query the function on ... more >>>
The paper is devoted to lower bounds on the time complexity of DPLL algorithms that solve the satisfiability problem using a splitting strategy. Exponential lower bounds on the running time of DPLL algorithms on unsatisfiable formulas follow from the lower bounds for resolution proofs. Lower bounds on satisfiable instances are ... more >>>
We consider the complexity of computing the determinant over arbitrary finite-dimensional algebras. We first consider the case that $A$ is fixed. We obtain the following dichotomy: If $A/rad(A)$ is noncommutative, then computing the determinant over $A$ is hard. ``Hard'' here means $\#P$-hard over fields of characteristic $0$ and $ModP_p$-hard over ... more >>>
We give exponentially small upper bounds on the success probability for computing the direct product of any function over any distribution using a communication protocol. Let suc(?,f,C) denote the maximum success probability of a 2-party communication protocol for computing f(x,y) with C bits of communication, when the inputs (x,y) are ... more >>>
We highlight the special case of Valiant's rigidity
problem in which the low-rank matrices are truth-tables
of sparse polynomials. We show that progress on this
special case entails that Inner Product is not computable
by small $\acz$ circuits with one layer of parity gates
close to the inputs. We then ...
more >>>
Håstad established that any predicate $P \subseteq \{0,1\}^m$ containing parity of width at least three is approximation resistant for almost satisfiable instances. However, in comparison to for example the approximation hardness of Max-3SAT, the result only holds for almost satisfiable instances. This limitation was addressed by O'Donnell, Wu, and Huang ... more >>>
We consider Reed-Solomon (RS) codes whose evaluation points belong to a subfield, and give a linear-algebraic list decoding algorithm that can correct a fraction of errors approaching the code distance, while pinning down the candidate messages to a well-structured affine space of dimension a constant factor smaller than the code ... more >>>
We study the problem of constructing explicit extractors for independent general weak random sources. For weak sources on $n$ bits with min-entropy $k$, perviously the best known extractor needs to use at least $\frac{\log n}{\log k}$ independent sources \cite{Rao06, BarakRSW06}. In this paper we give a new extractor that only ... more >>>
We describe new constructions of error correcting codes, obtained by "degree-lifting" a short algebraic geometry (AG) base-code of block-length $q$ to a lifted-code of block-length $q^m$, for arbitrary integer $m$. The construction generalizes the way degree-$d$, univariate polynomials evaluated over the $q$-element field (also known as Reed-Solomon codes) are "lifted" ... more >>>
In this work we explore error-correcting codes derived from
the ``lifting'' of ``affine-invariant'' codes.
Affine-invariant codes are simply linear codes whose coordinates
are a vector space over a field and which are invariant under
affine-transformations of the coordinate space. Lifting takes codes
defined over a vector space of small dimension ...
more >>>
Parameterized complexity theory measures the complexity of computational problems predominantly in terms of their parameterized time complexity. The purpose of the present paper is to demonstrate that the study of parameterized space complexity can give new insights into the complexity of well-studied parameterized problems like the feedback vertex set problem. ... more >>>
A boolean predicate $f:\{0,1\}^k\to\{0,1\}$ is said to be {\em somewhat approximation resistant} if for some constant $\tau > \frac{|f^{-1}(1)|}{2^k}$, given a $\tau$-satisfiable instance of the MAX-$k$-CSP$(f)$ problem, it is NP-hard to find an assignment that {\it strictly beats} the naive algorithm that outputs a uniformly random assignment. Let $\tau(f)$ denote ... more >>>
We initiate the study of \emph{inverse} problems in approximate uniform generation, focusing on uniform generation of satisfying assignments of various types of Boolean functions. In such an inverse problem, the algorithm is given uniform random satisfying assignments of an unknown function $f$ belonging to a class $\C$ of Boolean functions ... more >>>
The \textsc{equality} problem is usually one's first encounter with
communication complexity and is one of the most fundamental problems in the
field. Although its deterministic and randomized communication complexity
were settled decades ago, we find several new things to say about the
problem by focusing on two subtle aspects. The ...
more >>>
In this paper we define and examine the power of the conditional-sampling oracle in the context of distribution-property testing. The conditional-sampling oracle for a discrete distribution $\mu$ takes as input a subset $S \subset [n]$ of the domain, and outputs a random sample $i \in S$ drawn according to $\mu$, ... more >>>
We study a new framework for property testing of probability distributions, by considering distribution testing algorithms that have access to a conditional sampling oracle. \footnote{Independently from our work, Chakraborty et al. [CFGM13] also considered this framework. We discuss their work in Subsection 1.4.} This is an oracle that takes as ... more >>>
We show that public-key bit encryption schemes which support weak homomorphic evaluation of parity or majority cannot be proved message indistinguishable beyond AM intersect coAM via general (adaptive) reductions, and beyond statistical zero-knowledge via reductions of constant query complexity.
Previous works on the limitation of reductions for proving security of ... more >>>
We show that secure homomorphic evaluation of any non-trivial functionality of sufficiently many inputs with respect to any CPA secure encryption scheme cannot be implemented by constant depth, polynomial size circuits, i.e. in the class AC0. In contrast, we observe that certain previously studied encryption schemes (with quasipolynomial security) can ... more >>>
We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) ... more >>>
The study of locally testable codes (LTCs) has benefited from a number of nontrivial constructions discovered in recent years. Yet we still lack a good understanding of what makes a linear error correcting code locally testable and as a result we do not know what is the rate-limit of LTCs ... more >>>
We show that degree-$d$ block-symmetric polynomials in
$n$ variables modulo any odd $p$ correlate with parity
exponentially better than degree-$d$ symmetric
polynomials, if $n \ge c d^2 \log d$ and $d \in [0.995
\cdot p^t - 1,p^t)$ for some $t \ge 1$. For these
infinitely many degrees, our result ...
more >>>
We explain an asymmetric Prover-Delayer game which precisely characterizes proof size in tree-like Resolution. This game was previously described in a parameterized complexity context to show lower bounds for parameterized formulas and for the classical pigeonhole principle. The main point of this note is to show that the asymmetric game ... more >>>
The advice complexity of an online problem describes the additional information both necessary and sufficient for online algorithms to compute solutions of a certain quality. In this model, an oracle inspects the input before it is processed by an online algorithm. Depending on the input string, the oracle prepares an ... more >>>
For Boolean functions $f:\{0,1\}^n \to \{0,1\}$ and $g:\{0,1\}^m \to \{0,1\}$, the function composition of $f$ and $g$ denoted by $f\circ g : \{0,1\}^{nm} \to \{0,1\}$ is the value of $f$ on $n$ inputs, each of them is the calculation of $g$ on a distinct set of $m$ Boolean variables. Motivated ... more >>>
In FOCS 2001, Barak, Goldreich, Goldwasser and Lindell conjectured that the existence of ZAPs, introduced by Dwork and Naor in FOCS 2000, could lead to the design of a zero-knowledge proof system that is secure against both resetting provers and resetting verifiers. Their conjecture has been proven true by Deng, ... more >>>
We initiate the formal treatment of cryptographic constructions based on the hardness of computing remainders modulo an ideal in multivariate polynomial rings. Of particular interest to us is a class of schemes known as "Polly Cracker." We start by formalising and studying the relation between the ideal remainder problem and ... more >>>
We consider the task of compression of information when the source of the information and the destination do not agree on the prior, i.e., the distribution from which the information is being generated. This setting was considered previously by Kalai et al. (ICS 2011) who suggested that this was a ... more >>>
The question whether Identity-Based Encryption (IBE) can be based on the Decisional Diffie-Hellman (DDH) assumption is one of the most prominent questions in Cryptography related to DDH. We study limitations on the use of the DDH assumption in cryptographic constructions, and show that it is impossible to construct a secure ... more >>>
An error-correcting code $C \subseteq \F^n$ is called $(q,\epsilon)$-strong locally testable code (LTC) if there exists a randomized algorithm (tester) that makes at most $q$ queries to the input word. This algorithm accepts all codewords with probability 1 and rejects all non-codewords $x\notin C$ with probability at least $\epsilon \cdot ... more >>>
We introduce and study the \epsilon-rank of a real matrix A, defi ned, for any \epsilon > 0 as the minimum rank over matrices that approximate every entry of A to within an additive \epsilon. This parameter is connected to other notions of approximate rank and is motivated by ... more >>>
Around 2002, Leonid Gurvits gave a striking randomized algorithm to approximate the permanent of an n×n matrix A. The algorithm runs in O(n^2/?^2) time, and approximates Per(A) to within ±?||A||^n additive error. A major advantage of Gurvits's algorithm is that it works for arbitrary matrices, not just for nonnegative matrices. ... more >>>
We develop a new local characterization of the zero-error information complexity function for two party communication problems, and use it to compute the exact internal and external information complexity of the 2-bit AND function: $IC(AND,0) = C_{\wedge}\approx 1.4923$ bits, and $IC^{ext}(AND,0) = \log_2 3 \approx 1.5839$ bits. This leads to ... more >>>
Locally decodable codes (LDCs) are error correcting codes with the extra property that it is sufficient to read just a small number of positions of a possibly corrupted codeword in order to recover any one position of the input. To achieve this, it is necessary to use randomness in the ... more >>>
We present a new framework for proving fully black-box
separations and lower bounds. We prove a general theorem that facilitates
the proofs of fully black-box lower bounds from a one-way function (OWF).
Loosely speaking, our theorem says that in order to prove that a fully black-box
construction does ...
more >>>
We show a connection between the deMorgan formula size of a Boolean function and the noise stability of the function. Using this connection, we show that the Fourier spectrum of any balanced Boolean function computed by a deMorgan formula of size $s$ is concentrated on coefficients of degree up to ... more >>>
A function $f$ mapping $n$-bit strings to $m$-bit strings can be constructed from a bipartite graph with $n$ vertices on the left and $m$ vertices on the right having right-degree $d$ together with a predicate $P:\{0,1\}^d\rightarrow\{0,1\}$. The vertices on the left correspond to the bits of the input to the ... more >>>
We present a polynomial time dynamic programming algorithm for optimal partitions in the shortest path metric induced by a tree. This resolves, among other things, the exact complexity status of the optimal partition problems in one dimensional geometric metric settings. Our method of solution could be also of independent interest ... more >>>
We use self-reduction methods to prove strong information lower bounds on two of the most studied functions in the communication complexity literature: Gap Hamming Distance (GHD) and Inner Product (IP). In our first result we affirm the conjecture that the information cost of GHD is linear even under the uniform ... more >>>
We consider time-space tradeoffs for exactly computing frequency
moments and order statistics over sliding windows.
Given an input of length $2n-1$, the task is to output the function of
each window of length $n$, giving $n$ outputs in total.
Computations over sliding windows are related to direct sum problems
except ...
more >>>
Newman’s theorem states that we can take any public-coin communication protocol and convert it into one that uses only private randomness with only a little increase in communication complexity. We consider a reversed scenario in the context of information complexity: can we take a protocol that uses private randomness and ... more >>>
Let $G$ be a finite abelian group of torsion $r$ and let $A$ be a subset of $G$.
The Freiman-Ruzsa theorem asserts that if $|A+A| \le K|A|$
then $A$ is contained in a coset of a subgroup of $G$ of size at most $K^2 r^{K^4} |A|$. It was ...
more >>>
For $f$ a weighted voting scheme used by $n$ voters to choose between two candidates, the $n$ \emph{Shapley-Shubik Indices} (or {\em Shapley values}) of $f$ provide a measure of how much control each voter can exert over the overall outcome of the vote. Shapley-Shubik indices were introduced by Lloyd Shapley ... more >>>
A common method for increasing the usability and uplifting the security of pseudorandom function families (PRFs) is to ``hash" the inputs into a smaller domain before applying the PRF. This approach, known as ``Levin's trick", is used to achieve ``PRF domain extension" (using a short, e.g., fixed, input length PRF ... more >>>
In graph streaming a graph with $n$ vertices and $m$ edges is presented as a read-once stream of edges. We obtain an $\Omega(n \log n)$ lower bound on the space required to decide graph connectivity. This improves the known bounds of $\Omega(n)$ for undirected and $\Omega(m)$ for sparse directed graphs. ... more >>>
Let $\mathbb{F} = \mathbb{F}_p$ for any fixed prime $p \geq 2$. An affine-invariant property is a property of functions on $\mathbb{F}^n$ that is closed under taking affine transformations of the domain. We prove that all affine-invariant property having local characterizations are testable. In fact, we show a proximity-oblivious test for ... more >>>
We prove tight size bounds on monotone switching networks for the NP-complete problem of
$k$-clique, and for an explicit monotone problem by analyzing a pyramid structure of height $h$ for
the P-complete problem of generation. This gives alternative proofs of the separations of m-NC
from m-P and of m-NC$^i$ from ...
more >>>
We define DLOGTIME proof systems, DLTPS, which generalize NC0 proof systems.
It is known that functions such as Exact-k and Majority do not have NC0 proof systems. Here, we give a DLTPS for Exact-k (and therefore for Majority) and also for other natural functions such as Reach and k-Clique. Though ...
more >>>