We give a polynomial time algorithm that computes a
decomposition of a finite group G given in the form of its
multiplication table. That is, given G, the algorithm outputs two
subgroups A and B of G such that G is the direct product
of A ...
more >>>
Given a multivariate polynomial computed by an arithmetic branching program (ABP) of size $s$, we show that all its factors can be computed by arithmetic branching programs of size $\text{poly}(s)$. Kaltofen gave a similar result for polynomials computed by arithmetic circuits. The previously known best upper bound for ABP-factors was ... more >>>
We show that if $f(x_1,\ldots,x_n)$ is a polynomial with $s$ monomials and $g(x_1,\ldots,x_n)$ divides $f$ then $g$
has at most $\max(s^{O(\log s \log\log s)},d^{O(\log d)})$ monomials, where $d$ is a bound on the individual degrees
of $f$. This answers a question of von zur Gathen and Kaltofen (JCSS ...
more >>>
We show that for every integer $k \geq 2$, the Res($k$) propositional proof system does not have the weak feasible disjunction property. Next, we generalize a recent result of Atserias and Müller [FOCS, 2019] to Res($k$). We show that if NP is not included in P (resp. QP, SUBEXP) then ... more >>>
Consider two parties who wish to communicate in order to execute some interactive protocol $\pi$. However, the communication channel between them is noisy: An adversary sees everything that is transmitted over the channel and can change a constant fraction of the bits as he pleases, thus interrupting the execution of ... more >>>
In this paper, we present novel deterministic algorithms for multiplying two $n \times n$ matrices approximately. Given two matrices $A,B$ we return a matrix $C'$ which is an \emph{approximation} to $C = AB$. We consider the notion of approximate matrix multiplication in which the objective is to make the Frobenius ... more >>>
\begin{abstract}
The Fast Johnson-Lindenstrauss Transform was recently discovered by
Ailon and Chazelle as a technique for performing fast dimension
reduction from $\ell_2^d$ to $\ell_2^k$ in time $O(\max\{d\log d,
k^3\})$, where $k$ is the target lower dimension. This beats the
naive $O(dk)$ achieved by multiplying by random dense matrices, as
noticed ...
more >>>
We give an $O(N\cdot \log N\cdot 2^{O(\log^*N)})$ algorithm for
multiplying two $N$-bit integers that improves the $O(N\cdot \log
N\cdot \log\log N)$ algorithm by
Sch\"{o}nhage-Strassen. Both these algorithms use modular
arithmetic. Recently, F\"{u}rer gave an $O(N\cdot \log
N\cdot 2^{O(\log^*N)})$ algorithm which however uses arithmetic over
complex numbers as opposed to ...
more >>>
We prove that any algorithm for learning parities requires either a memory of quadratic size or an exponential number of samples. This proves a recent conjecture of Steinhardt, Valiant and Wager and shows that for some learning problems a large storage space is crucial.
More formally, in the problem of ... more >>>
We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon (FRS) codes can be made to run in nearly-linear time. This yields, to the best of our knowledge, the first known family of codes that can be decoded (and encoded) in nearly linear time, even as they ... more >>>
Until a few years ago, the fastest known matrix multiplication algorithm, due to Coppersmith and Winograd (1990), ran in time $O(n^{2.3755})$. Recently, a surge of activity by Stothers, Vassilevska-Williams, and Le Gall has led to an improved algorithm running in time $O(n^{2.3729})$. These algorithms are obtained by analyzing higher ... more >>>
Multivariate multipoint evaluation is the problem of evaluating a multivariate polynomial, given as a coefficient vector, simultaneously at multiple evaluation points. In this work, we show that there exists a deterministic algorithm for multivariate multipoint evaluation over any finite field $\mathbb{F}$ that outputs the evaluations of an $m$-variate polynomial of ... more >>>
We design nearly-linear time numerical algorithms for the problem of multivariate multipoint evaluation over the fields of rational, real and complex numbers. We consider both \emph{exact} and \emph{approximate} versions of the algorithm. The input to the algorithms are (1) coefficients of an $m$-variate polynomial $f$ with degree $d$ in each ... more >>>
We present direct constructions of pseudorandom function (PRF) families based on Goldreich's one-way function. Roughly speaking, we assume that non-trivial local mappings $f:\{0,1\}^n\rightarrow \{0,1\}^m$ whose input-output dependencies graph form an expander are hard to invert. We show that this one-wayness assumption yields PRFs with relatively low complexity. This includes weak ... more >>>
The family of Reed-Solomon (RS) codes plays a prominent role in the construction of quasilinear probabilistically checkable proofs (PCPs) and interactive oracle proofs (IOPs) with perfect zero knowledge and polylogarithmic verifiers. The large concrete computational complexity required to prove membership in RS codes is one of the biggest obstacles to ... more >>>
Multipoint evaluation is the computational task of evaluating a polynomial given as a list of coefficients at a given set of inputs. Besides being a natural and fundamental question in computer algebra on its own, fast algorithms for this problem is also closely related to fast algorithms for other natural ... more >>>
We present a deterministic $2^{k^{\mathcal{O}(1)}} \text{poly}(n,d)$ time algorithm for decomposing $d$-dimensional, width-$n$ tensors of rank at most $k$ over $\mathbb{R}$ and $\mathbb{C}$. This improves upon the previous randomized algorithm of Peleg, Shpilka, and Volk (ITCS '24) that takes $2^{k^{k^{\mathcal{O}(k)}}} \text{poly}(n,d)$ time and the deterministic $n^{k^k}$ time algorithms of Bhargava, Saraf, ... more >>>
We present two new methods for finding a lowest common ancestor (LCA)
for each pair of vertices of a directed acyclic graph (dag) on
n vertices and m edges.
The first method is a natural approach that solves the all-pairs LCA
problem for the input dag in time O(nm).
The ... more >>>
We present new faster algorithms for the exact solution of the shortest vector problem in arbitrary lattices. Our main result shows that the shortest vector in any $n$-dimensional lattice can be found in time $2^{3.199 n}$ and space $2^{1.325 n}$.
This improves the best previously known algorithm by Ajtai, Kumar ...
more >>>
We give a $O^*(k^{O(k)})$ time isomorphism testing algorithm for graphs of eigenvalue multiplicity bounded by $k$ which improves on the previous
best running time bound of $O^*(2^{O(k^2/\log
k)})$.
We study the complexity of polynomial multiplication over arbitrary fields. We present a unified approach that generalizes all known asymptotically fastest algorithms for this problem. In particular, the well-known algorithm for multiplication of polynomials over fields supporting DFTs of large smooth orders, Schönhage-Strassen's algorithm over arbitrary fields of characteristic different ... more >>>
Convex relaxations based on different hierarchies of
linear/semi-definite programs have been used recently to devise
approximation algorithms for various optimization problems. The
approximation guarantee of these algorithms improves with the number
of {\em rounds} $r$ in the hierarchy, though the complexity of solving
(or even writing down the solution for) ...
more >>>
We consider the fault diagnosis problem: how to use parallel testing
rounds to identify which processors in a set are faulty. We prove
that 4 rounds suffice when 3% or less of the processors are faulty,
and 4 rounds are necessary when any nontrivial constant fraction of
the processors are ...
more >>>
In sharp contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. In this paper we establish the feasible interpolation technique for all resolution-based QBF systems, whether modelling CDCL or expansion-based solving. This both provides the first general lower bound method for QBF ... more >>>
It was shown some years ago that the computation time for many important
Boolean functions of n arguments on concurrent-read exclusive-write
parallel random-access machines
(CREW PRAMs) of unlimited size is at least f(n) = 0.72 log n.
On the other hand, it ...
more >>>
The Schwartz-Zippel Lemma states that if a low-degree multivariate polynomial with coefficients in a field is not zero everywhere in the field, then it has few roots on every finite subcube of the field. This fundamental fact about multivariate polynomials has found many applications in algorithms, complexity theory, coding theory, ... more >>>
We ask for feasibly constructive proofs of known circuit lower bounds for explicit functions on bit strings of length $n$. In 1995 Razborov showed that many can be proved in Cook’s theory $PV_1$, a bounded arithmetic formalizing polynomial time reasoning. He formalized circuit lower bound statements for small $n$ of ... more >>>
A classical challenge in complexity theory and cryptography is to simulate interactive proof systems by non-interactive proof systems. In this work we leverage approaches from recent works in derandomization to address this challenge, focusing on non-interactive simulations that are sound against uniform adversarial algorithms.
Our results concern fundamental questions in ... more >>>
Shortly after the introduction of zero-knowledge proofs, Goldreich, Micali and Wigderson (CRYPTO '86) demonstrated their wide applicability by constructing zero-knowledge proofs for the NP-complete problem of graph 3-coloring. A long-standing open question has been whether parallel repetition of their protocol preserves zero knowledge. In this work, we answer this question ... more >>>
In this work, we study the stability of the {\sf FIFO} ({\sf
First-In-First-Out}) protocol in the context of Adversarial
Queueing Theory. As an important intermediate step, we consider
{\em dynamic capacities}, where each network link capacity may
arbitrarily take on values in the two-valued set of integers
$\{1,C\}$ for $C>1$ ...
more >>>
We show that for any $\epsilon > 0$, a maximum-weight triangle in an
undirected graph with $n$ vertices and real weights assigned to
vertices can be found in time $\O(n^{\omega} + n^{2 + \epsilon})$,
where $\omega $ is the exponent of fastest matrix multiplication
algorithm. By the currently best bound ...
more >>>
We consider the problem of finding a maximum independent set in a
random graph. The random graph $G$ is modelled as follows. Every
edge is included independently with probability $\frac{d}{n}$, where
$d$ is some sufficiently large constant. Thereafter, for some
constant $\alpha$, a subset $I$ of $\alpha n$ vertices is ...
more >>>
The Fiat-Shamir heuristic transforms a public-coin interactive proof into a non-interactive argument, by replacing the verifier with a cryptographic hash function that is applied to the protocol’s transcript. Constructing hash functions for which this transformation is sound is a central and long-standing open question in cryptography.
We show that ... more >>>
We study the round complexity of various cryptographic protocols. Our main result is a tight lower bound on the round complexity of any fully-black-box construction of a statistically-hiding commitment scheme from one-way permutations, and even from trapdoor permutations. This lower bound matches the round complexity of the statistically-hiding commitment scheme ... more >>>
Given a set of $n$ random $d$-dimensional boolean vectors with the promise that two of them are $\rho$-correlated with each other, how quickly can one find the two correlated vectors? We present a surprising and simple algorithm which, for any constant $\epsilon>0$ runs in (expected) time $d n^{\frac{3 \omega}{4}+\epsilon} poly(\frac{1}{\rho})< ... more >>>
(This is a revised version of work that was posted on arXiv in July 2010.)
We present sublinear-time (randomized) algorithms for finding simple cycles of length at least $k\geq3$ and tree-minors in bounded-degree graphs.
The complexity of these algorithms is related to the distance
of the graph from being ...
more >>>
We investigate a new type of information-theoretic identification problem, suggested to us by Alan Taylor. In this problem we are given a set of items, more than half of which share a common ``good" value. The other items have various other values which are called ``bad". The only method we ... more >>>
Let $G$ be an undirected, bounded degree graph
with $n$ vertices. Fix a finite graph $H$, and suppose one must remove $\varepsilon n$ edges from $G$ to make it $H$-minor free (for some small constant $\varepsilon > 0$). We give an $n^{1/2+o(1)}$-time randomized procedure that, with high probability, finds an ...
more >>>
Let $G$ be an undirected, bounded degree graph with $n$ vertices. Fix a finite graph $H$, and suppose one must remove $\varepsilon n$ edges from $G$ to make it $H$-minor free (for some small constant $\varepsilon > 0$).
We give an $n^{1/2+o(1)}$-time randomized procedure that, with high probability, finds an ...
more >>>
We show how to find in Hamiltonian graphs a cycle of length
$n^{\Omega(1/\log\log n)}$. This is a consequence of a more general
result in which we show that if $G$ has maximum degree $d$ and has a
cycle with $k$ vertices (or a 3-cyclable minor $H$ with $k$ vertices),
then ...
more >>>
We investigate the following lower bound methods for regular
languages: The fooling set technique, the extended fooling set
technique, and the biclique edge cover technique. It is shown that
the maximal attainable lower bound for each of the above mentioned
techniques can be algorithmically deduced from ...
more >>>
We study the problem of finding monotone subsequences in an array from the viewpoint of sublinear algorithms. For fixed $k \in \mathbb{N}$ and $\varepsilon > 0$, we show that the non-adaptive query complexity of finding a length-$k$ monotone subsequence of $f \colon [n] \to \mathbb{R}$, assuming that $f$ is $\varepsilon$-far ... more >>>
Pseudo-deterministic algorithms are randomized search algorithms which output unique solutions (i.e., with high probability they output the same solution on each execution). We present a pseudo-deterministic algorithm that, given a prime $p,$ finds a primitive root modulo $p$ in time $\exp(O(\sqrt{\log p \log \log p}))$. This improves upon the previous ... more >>>
Computing the Fourier transform is a basic building block used in numerous applications. For data intensive applications, even the $O(N\log N)$ running time of the Fast Fourier Transform (FFT) algorithm may be too slow, and {\em sub-linear} running time is necessary. Clearly, outputting the entire Fourier transform in sub-linear ... more >>>
We present an efficient reduction mapping undirected graphs
G with n = 2^k vertices for integers k
to tables of partially specified Boolean functions
g: {0,1}^(4k+1) -> {0,1,*} so that for any integer m,
G has a vertex colouring using m colours if and only if g ...
more >>>
We show that popular hardness conjectures about problems from the field of fine-grained complexity theory imply structural results for resource-based complexity classes. Namely, we show that if either k-Orthogonal Vectors or k-CLIQUE requires $n^{\epsilon k}$ time, for some constant $\epsilon > 1/2$, to count (note that these conjectures are significantly ... more >>>
In this paper, we show that there is a family of polynomials $\{P_n\}$, where $P_n$ is a polynomial in $n$ variables of degree at most $d = O(\log^2 n)$, such that
1. $P_n$ can be computed by linear sized homogeneous depth-$5$ circuits.
2. $P_n$ can be computed by ... more >>>
We prove a general combinatorial lower bound on the
size of monotone circuits. The argument is different from
Razborov's method of approximation, and is based on Sipser's
notion of `finite limit' and Haken's `counting bottlenecks' idea.
We then apply this criterion to the ...
more >>>
We give a new characterization of NL as the class of languages whose members have certificates that can be verified with small error in polynomial time by finite state machines that use a constant number of random bits, as opposed to its conventional description in terms of deterministic logarithmic-space verifiers. ... more >>>
We use entropy rates and Schur concavity to prove that, for every integer k >= 2, every nonzero rational number q, and every real number alpha, the base-k expansions of alpha, q+alpha, and q*alpha all have the same finite-state dimension and the same finite-state strong dimension. This extends, and gives ... more >>>
We investigate the problem of winner determination from computational social choice theory in the data stream model. Specifically, we consider the task of summarizing an arbitrarily ordered stream of $n$ votes on $m$ candidates into a small space data structure so as to be able to obtain the winner determined ... more >>>
An aperiodic tile set was first constructed by R.Berger while
proving the undecidability of the domino problem. It turned out
that aperiodic tile sets appear in many topics ranging from
logic (the Entscheidungsproblem) to physics (quasicrystals)
We present a new construction of an aperiodic tile set. The
flexibility of this ...
more >>>
We explore whether various complexity classes can have linear or
more generally $n^k$-sized circuit families for some fixed $k$. We
show
1) The following are equivalent,
- NP is in SIZE(n^k) (has O(n^k)-size circuit families) for some k
- P^NP|| is in SIZE(n^k) for some k
- ONP/1 is in ...
more >>>
The standard models of testing graph properties postulate that the vertex-set consists of $\{1,2,...,n\}$, where $n$ is a natural number that is given explicitly to the tester.
Here we suggest more flexible models by postulating that the tester is given access to samples the arbitrary vertex-set; that is, the vertex-set ...
more >>>
We prove that any propagating E0L system cannot generate the language containing all words of the form w#w. This result, together with some known ones, enable us to conclude that the flip-pushdown automata with k pushdown reversals (i.e. the pushdown automata with the ability to flip its pushdown) and E0L ... more >>>
We give a new construction of algebraic codes which are efficiently list decodable from a fraction $1-R-\epsilon$ of adversarial errors where $R$ is the rate of the code, for any desired positive constant $\epsilon$. The worst-case list size output by the algorithm is $O(1/\epsilon)$, matching the existential bound for random ... more >>>
We present new constructions of pseudorandom generators (PRGs) for two of the most widely-studied non-uniform circuit classes in complexity theory. Our main result is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth $d\in\mathbb{N}$ ... more >>>
We construct pseudorandom generators that fool functions of halfspaces (threshold functions) under a very broad class of product distributions. This class includes not only familiar cases such as the uniform distribution on the discrete cube, the uniform distribution on the solid cube, and the multivariate Gaussian distribution, but also includes ... more >>>
Fooling pairs are one of the standard methods for proving lower bounds for deterministic two-player communication complexity. We study fooling pairs in the context of randomized communication complexity.
We show that every fooling pair induces far away distributions on transcripts of private-coin protocols. We then conclude that the private-coin randomized ...
more >>>
We study the complexity of computing $k$-wise independent and
$\epsilon$-biased generators $G : \{0,1\}^n \to \{0,1\}^m$.
Specifically, we refer to the complexity of computing $G$ \emph{explicitly}, i.e.
given $x \in \{0,1\}^n$ and $i \in \{0,1\}^{\log m}$, computing the $i$-th output bit of $G(x)$.
Mansour, Nisan and Tiwari (1990) show that ...
more >>>
We revisit the problem of constructing explicit pseudorandom generators
that fool with error $\epsilon$ degree-$d$ polynomials in $n$ variables
over the field $F_q$, in the case of large $q$. Previous constructions
either have seed length at least $2^{d}\log q$, and thus are only non-trivial
when the degree is less than ...
more >>>
We give a pseudorandom generator that fools $m$-facet polytopes over $\{0,1\}^n$ with seed length $\mathrm{polylog}(m) \cdot \log n$. The previous best seed length had superlinear dependence on $m$. An immediate consequence is a deterministic quasipolynomial time algorithm for approximating the number of solutions to any $\{0,1\}$-integer program.
more >>>We consider extensions of the DPLL approach to satisfiability testing that add a version of memoization, in which formulas that the algorithm has previously shown to be unsatisfiable are remembered for later use. Such formula caching algorithms have been suggested for satisfiability and stochastic satisfiability. We formalize these methods by ... more >>>
We study the formula complexity of Iterated Sub-Permutation Matrix Multiplication, the logspace-complete problem of computing the product of $k$ $n$-by-$n$ Boolean matrices with at most a single $1$ in each row and column. For all $d \le \log k$, this problem is solvable by $n^{O(dk^{1/d})}$ size monotone formulas of two ... more >>>
We give an example of a non-commutative monotone polynomial f which can be computed by a polynomial-size non-commutative formula, but every monotone non-commutative circuit computing f must have an exponential size. In the non-commutative setting this gives, a fortiori, an exponential separation between monotone and general formulas, monotone and general ... more >>>
We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance $k(n)$ Connectivity, which asks whether two specified nodes in a graph of size $n$ are connected by a path of length at most $k(n)$. This problem is solvable (by ... more >>>
We devise a new technique to prove lower bounds for the proof size in resolution-type calculi for quantified Boolean formulas (QBF). The new technique applies to the strong expansion system IR-calc and thereby also to the most studied QBF system Q-Resolution.
Our technique exploits a clear semantic paradigm, showing the ... more >>>
We achieve essentially the largest possible separation between quantum and classical query complexities. We do so using a property-testing problem called Forrelation, where one needs to decide whether one Boolean function is highly correlated with the Fourier transform of a second function. This problem can be solved using 1 quantum ... more >>>
The concept of matrix rigidity was first introduced by Valiant in [Val77]. Roughly speaking, a matrix is rigid if its rank cannot be reduced significantly by changing a small number of entries. There has been extensive interest in rigid matrices as Valiant showed that rigidity can be used to prove ... more >>>
We study the Fourier spectrum of functions $f\colon \{0,1\}^{mk} \to \{-1,0,1\}$ which can be written as a product of $k$ Boolean functions $f_i$ on disjoint $m$-bit inputs. We prove that for every positive integer $d$,
\[
\sum_{S \subseteq [mk]: |S|=d} |\hat{f_S}| = O(m)^d .
\]
Our upper bound ...
more >>>
For Boolean functions computed by de Morgan formulas of subquadratic size or read-once de Morgan formulas, we prove a sharp concentration of the Fourier mass on ``small-degree'' coefficients. For a Boolean function $f:\{0,1\}^n\to\{1,-1\}$ computable by a de Morgan formula of size $s$, we show that
\[
\sum_{A\subseteq [n]\; :\; |A|>s^{1/\Gamma ...
more >>>
Recently several conjectures were made regarding the Fourier spectrum of low-degree polynomials. We show that these conjectures imply new correlation bounds for functions related to Majority. Then we prove several new results on correlation bounds which aim to, but don't, resolve the conjectures. In particular, we prove several new results ... more >>>
We prove that for every parity decision tree of depth $d$ on $n$ variables, the sum of absolute values of Fourier coefficients at level $\ell$ is at most $d^{\ell/2} \cdot O(\ell \cdot \log(n))^\ell$.
Our result is nearly tight for small values of $\ell$ and extends a previous Fourier bound ...
more >>>
We analyze the Fourier growth, i.e. the $L_1$ Fourier weight at level $k$ (denoted $L_{1,k}$), of read-once regular branching programs.
We prove that every read-once regular branching program $B$ of width $w \in [1,\infty]$ with $s$ accepting states on $n$-bit inputs must have its $L_{1,k}$ bounded by
$$
\min\left\{ ...
more >>>
We analyze the Fourier growth, i.e. the $L_1$ Fourier weight at level $k$ (denoted $L_{1,k}$), of various well-studied classes of "structured" $\mathbb{F}_2$-polynomials. This study is motivated by applications in pseudorandomness, in particular recent results and conjectures due to [CHHL19,CHLT19,CGLSS20] which show that upper bounds on Fourier growth (even at ... more >>>
We study the general problem of testing whether an unknown discrete distribution belongs to a given family of distributions. More specifically, given a class of distributions $\mathcal{P}$ and sample access to an unknown distribution $\mathbf{P}$, we want to distinguish (with high probability) between the case that $\mathbf{P} \in \mathcal{P}$ and ... more >>>
A folklore conjecture in quantum computing is that the acceptance probability of a quantum query algorithm can be approximated by a classical decision tree, with only a polynomial increase in the number of queries. Motivated by this conjecture, Aaronson and Ambainis (Theory of Computing, 2014) conjectured that this should hold ... more >>>
The matching and linear matroid intersection problems are solvable in quasi-NC, meaning that there exist deterministic algorithms that run in polylogarithmic time and use quasi-polynomially many parallel processors. However, such a parallel algorithm is unknown for linear matroid matching, which generalizes both of these problems. In this work, we propose ... more >>>
In recent work by Chattopadhyay et al.[CHHL19,CHLT19], the authors exhibit a simple and flexible construction of pseudorandom generators for classes of Boolean functions that satisfy $L_1$ Fourier bounds. [CHHL19] show that if a class satisfies such tail bounds at all levels, this implies a PRG whose seed length depends on ... more >>>
Free binary decision diagrams (FBDDs) are graph-based data structures representing Boolean functions with a constraint (additional to binary decision diagrams) that each variable is tested at most once during the computation. The function EAR_n is the following Boolean function defined
for n x n Boolean matrices: EAR_n(M)=1 iff the matrix ...
more >>>
This paper continues the investigation of the connection between proof
systems and approximation. The emphasis is on proving ``tight''
non-approximability results via consideration of measures like the
``free bit complexity'' and the ``amortized free bit complexity'' of
proof systems.
The first part of the paper presents a collection of new ... more >>>
For a set A and a number n let F_n^A(x_1,...,x_n) =
A(x_1)\cdots A(x_n). We study how hard it is to approximate this
function in terms of the number of queries required. For a general
set A we have exact bounds that depend on functions from coding
theory. These are applied ...
more >>>
We study methods of converting algorithms that distinguish pairs
of distributions with a gap that has an absolute value that is noticeable
into corresponding algorithms in which the gap is always positive.
Our focus is on designing algorithms that, in addition to the tested string,
obtain a ...
more >>>
Two-source and affine extractors and dispersers are fundamental objects studied in the context of derandomization. This paper shows how to construct two-source extractors and dispersers for arbitrarily small min-entropy rate in a black-box manner from affine extractors with sufficiently good parameters. Our analysis relies on the study of approximate duality, ... more >>>
The sunflower conjecture is one of the most well-known open problems in combinatorics. It has several applications in theoretical computer science, one of which is DNF compression, due to Gopalan, Meka and Reingold [Computational Complexity 2013]. In this paper, we show that improved bounds for DNF compression imply improved bounds ... more >>>
In this paper, we present a new construction of simplicial complexes of subpolynomial degree with arbitrarily good local spectral expansion. Previously, the only known high-dimensional expanders (HDXs) with arbitrarily good expansion and less than polynomial degree were based on one of two constructions, namely Ramanujan complexes and coset complexes. ... more >>>
We develop a new local characterization of the zero-error information complexity function for two party communication problems, and use it to compute the exact internal and external information complexity of the 2-bit AND function: $IC(AND,0) = C_{\wedge}\approx 1.4923$ bits, and $IC^{ext}(AND,0) = \log_2 3 \approx 1.5839$ bits. This leads to ... more >>>
Locally Decodable Code (LDC) is a code that encodes a message in a way that one can decode any particular symbol of the message by reading only a constant number of locations, even if a constant fraction of the encoded message is adversarially
corrupted.
In this paper we ... more >>>
Since its inception, public-key encryption (PKE) has been one of the main cornerstones of cryptography. A central goal in cryptographic research is to understand the foundations of public-key encryption and in particular, base its existence on a natural and generic complexity-theoretic assumption. An intriguing candidate for such an assumption is ... more >>>
A local tester for an error-correcting code is a probabilistic procedure that queries a small subset of coordinates, accepts codewords with probability one, and rejects non-codewords with probability proportional to their distance from the code. The local tester is {\em robust} if for non-codewords it satisfies the stronger property that ... more >>>
Building on Barak's work (Random'02),
Fortnow and Santhanam (FOCS'04) proved a time hierarchy
for probabilistic machines with one bit of advice.
Their argument is based on an implicit translation technique,
which allow to translate separation results for short (say logarithmic)
advice (as shown by Barak) into separations for ...
more >>>
Goos, Pitassi and Watson (ITCS, 2015) have recently introduced the notion of Zero-Information Arthur-Merlin Protocols (ZAM). In this model, which can be viewed as a private version of the standard Arthur-Merlin communication complexity game, Alice and Bob are holding a pair of inputs $x$ and $y$ respectively, and Merlin, the ... more >>>
Common presentations of the NP-completeness of SAT suffer
from two drawbacks which hinder the scope of this
flagship result. First, they do not apply to machines
equipped with random-access memory, also known as
direct-access memory, even though this feature is
critical in basic algorithms. Second, they incur a
quadratic blow-up ...
more >>>
The finite field Kakeya problem deals with the way lines in different directions can overlap in a vector space over a finite field. This problem came up in the study of certain Euclidean problems and, independently, in the search for explicit randomness extractors. We survey recent progress on this problem ... more >>>
In 2003, Atserias and Dalmau resolved a major open question about the resolution proof system by establishing that the space complexity of CNF formulas is always an upper bound on the width needed to refute them. Their proof is beautiful but somewhat mysterious in that it relies heavily on tools ... more >>>
We study the problem of identity testing for depth-3 circuits, over the
field of reals, of top fanin k and degree d (called sps(k,d)
identities). We give a new structure theorem for such identities and improve
the known deterministic d^{k^k}-time black-box identity test (Kayal &
Saraf, FOCS 2009) to one ...
more >>>
We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution, depending only on its expectation. This resolves a weak version of a problem left open by Karlin-Klein-Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a minor improvement of ... more >>>
We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxations given by $\Omega\left(\frac{\log n}{\log \log n}\right)$ levels of the Sherali-Adams hierarchy on instances ... more >>>
A catalytic machine is a model of computation where a traditional space-bounded machine is augmented with an additional, significantly larger, "catalytic" tape, which, while being available as a work tape, has the caveat of being initialized with an arbitrary string, which must be preserved at the end of the computation. ... more >>>
We present a radically new approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions. A central conceptual contribution in our work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating arbitrary polynomial-size circuits), {\em without Gentry's bootstrapping procedure}.
... more >>>We say that a circuit $C$ over a field $F$ functionally computes an $n$-variate polynomial $P \in F[x_1, x_2, \ldots, x_n]$ if for every $x \in \{0,1\}^n$ we have that $C(x) = P(x)$. This is in contrast to {syntactically} computing $P$, when $C \equiv P$ as formal polynomials. In this ... more >>>
Recently, Forbes, Kumar and Saptharishi [CCC, 2016] proved that there exists an explicit $d^{O(1)}$-variate and degree $d$ polynomial $P_{d} \in VNP$ such that if any depth four circuit $C$ of bounded formal degree $d$ which computes a polynomial of bounded individual degree $O(1)$, that is functionally equivalent to $P_d$, then ... more >>>
Strong algebraic proof systems such as IPS (Ideal Proof System; Grochow-Pitassi JACM 2018) offer a general model for
deriving polynomials in an ideal and refuting unsatisfiable propositional formulas, subsuming most standard propositional proof systems. A major approach for lower bounding the size of IPS refutations is the Functional Lower Bound ...
more >>>
We show that the class of integer-valued functions computable by
polynomial-space Turing machines is exactly the class of functions f
for which there is a nondeterministic polynomial-time Turing
machine with a certain order on its paths that on input x outputs a 3x3
matrix with entries from {-1,0,1} on each ...
more >>>
A homomorphic encryption scheme is one that allows computing on encrypted data without decrypting it first. In fully homomorphic encryption it is possible to apply any efficiently computable function to encrypted data. We provide a survey on the origins, definitions, properties, constructions and uses of fully homomorphic encryption.
more >>>We show $\text{EOPL}=\text{PLS}\cap\text{PPAD}$. Here the class $\text{EOPL}$ consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubacek and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse ... more >>>
Extended Clifford circuits straddle the boundary between classical and quantum computational power. Whether such circuits are efficiently classically simulable seems to depend delicately on the ingredients of the circuits. While some combinations of ingredients lead to efficiently classically simulable circuits, other combinations that might just be slightly different, lead to ... more >>>