In 1955, John Nash sent a remarkable letter to the National Security Agency, in which—seeking to build theoretical foundations for cryptography—he all but formulated what today we call the P=?NP problem, considered one of the great open problems of science. Here I survey the status of this problem in 2017, ... more >>>
Given a graph $G$, we consider the problem of finding the largest set
of edge-disjoint triangles contained in $G$. We show that even the
simpler case of decomposing the edges of
a sparse split graph $G$ into edge-disjoint triangles
is NP-complete. We show next that the case of a general ...
more >>>
In our problem we are given a set of customers, their positions on the
plane and their demands. Geometrically, directional antenna with
parameters $\alpha,\rho,R$ is a set
of points with radial coordinates $(\theta,r)$ such that
$\alpha \le \theta \le \alpha+\rho$ and $r \le R$. Given a set of
possible directional ...
more >>>
A tree code is an edge-coloring of the complete infinite binary tree such that every two nodes of equal depth have a fraction--bounded away from $0$--of mismatched colors between the corresponding paths to their least common ancestor. Tree codes were introduced in a seminal work by Schulman (STOC 1993) and ... more >>>
Let two linear matroids have the same rank in matroid intersection.
A maximum linear matroid intersection (maximum linear matroid parity
set) is called a basic matroid intersection (basic matroid parity
set), if its size is the rank of the matroid. We present that
enumerating all basic matroid intersections (basic matroid ...
more >>>
It is shown that integer coprimality is in NC.
more >>>This paper presents new results on parallel constructions of the
length-limited prefix-free codes with the minimum redundancy.
We describe an algorithm for the construction of length-limited codes
that works in $O(L)$ time with $n$ processors for $L$ the
maximal codeword length.
We also describe an algorithm for a construction ...
more >>>
We address the problem of organizing a set $T$ of shared data into
the memory modules of a Distributed Memory Machine (DMM) in order
to minimize memory access conflicts (i.e. memory contention)
during read operations.
Previous solutions for this problem can be found as fundamental ...
more >>>
We prove that for every 3-player (3-prover) game, with binary questions and answers and value less than $1$, the value of the $n$-fold parallel repetition of the game decays polynomially fast to $0$. That is, for every such game, there exists a constant $c>0$, such that the value of the ... more >>>
We show that the value of the $n$-fold repeated GHZ game is at most $2^{-\Omega(n)}$, improving upon the polynomial bound established by Holmgren and Raz. Our result is established via a reduction to approximate subgroup type questions from additive combinatorics.
more >>>In a two player game, a referee asks two cooperating players (who are
not allowed to communicate) questions sampled from some distribution
and decides whether they win or not based on some predicate of the
questions and their answers. The parallel repetition of the game is
the game in which ...
more >>>
The Parallel Repetition Theorem upper-bounds the value of a repeated (tensored) two prover game G^k in terms of the value of the game G and the number of repetitions k.
Contrary to what one might have guessed, the value of G^k is not val(G)^k, but rather a more complicated ...
more >>>
We study parallel repetition of k-player games where the constraints satisfy the projection property. We prove exponential decay in the value of a parallel repetition of projection games with value less than 1.
more >>>In a recent work, Moshkovitz [FOCS '14] presented a transformation on two-player games called "fortification'', and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an analytic reformulation of Moshkovitz's fortification framework, which was originally cast in combinatorial ... more >>>
We settle a number of questions in variants of Winfree's abstract Tile Assembly Model (aTAM), a model of molecular algorithmic self-assembly. In the "hierarchical" aTAM, two assemblies, both consisting of multiple tiles, are allowed to aggregate together, whereas in the "seeded" aTAM, tiles attach one at a time to a ... more >>>
We are going to analyze simple search tree algorithms
for Weighted d-Hitting Set. Although the algorithms are simple, their analysis is technically rather involved. However, this approach allows us to even improve on elsewhere published algorithm running time estimates for the more restricted case of (unweighted) d-Hitting Set.
A general framework for parameterized proof complexity was introduced by Dantchev, Martin, and Szeider (FOCS'07). In that framework the parameterized version of any proof system is not fpt-bounded for some technical reasons, but we remark that this question becomes much more interesting if we restrict ourselves to those parameterized contradictions ... more >>>
We present a complete classification of the parameterized complexity of all operator fragments of the satisfiability problem in computation tree logic CTL. The investigated parameterization is temporal depth and pathwidth. Our results show a dichotomy between W[1]-hard and fixed-parameter tractable fragments. The two real operator fragments which are in FPT ... more >>>
We show that if $\mathcal C$ is a class of graphs which is
"nowhere dense" then first-order model-checking is
fixed-parameter tractable on $\mathcal C$. As all graph classes which exclude a fixed minor, or are of bounded local tree-width or locally exclude a minor are nowhere dense, this generalises algorithmic ...
more >>>
We consider the PermCode problem to decide, given a representation of a permutation group G and a parameter k, whether there is a non-trivial element of G with support at most k. This problem generalizes several problems in the literature. We introduce a new method that allows to reduce the ... more >>>
A parameterized problem is called fixed parameter tractable
if it admits a solving algorithm whose running time on
input instance $(I,k)$ is $f(k) \cdot |I|^\alpha$, where $f$
is an arbitrary function depending only on~$k$. Typically,
$f$ is some exponential function, e.g., $f(k)=c^k$ for ...
more >>>
The Parameterized Inapproximability Hypothesis (PIH) asserts that no fixed parameter tractable (FPT) algorithm can distinguish a satisfiable CSP instance, parameterized by the number of variables, from one where every assignment fails to satisfy an $\varepsilon$ fraction of constraints for some absolute constant $\varepsilon > 0$. PIH plays the role of ... more >>>
We prove that the Minimum Distance Problem (MDP) on linear codes over any fixed finite field and parameterized by the input distance bound is W[1]-hard to approximate within any constant factor. We also prove analogous results for the parameterized Shortest Vector Problem (SVP) on integer lattices. Specifically, we prove that ... more >>>
The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb{F}_2$, which can be stated as follows: given a generator matrix A and an integer k, determine whether the code generated by A has distance at most k, or in other words, whether ... more >>>
The $k$-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear codes over $\mathbb F_2$, which can be stated as follows: given a generator matrix $\mathbf A$ and an integer $k$, determine whether the code generated by $\mathbf A$ has distance at most $k$. Here, $k$ ... more >>>
We consider the framework of Parameterized Complexity, and we
investigate the issue of which problems do admit efficient fixed
parameter parallel algorithms by introducing two different
degrees of efficiently parallelizable parameterized problems, PNC
and FPP. We sketch both some FPP-algorithms solving natural
parameterized problems and ...
more >>>
We propose a proof-theoretic approach for gaining evidence that certain parameterized problems are not fixed-parameter tractable. We consider proofs that witness that a given propositional formula cannot be satisfied by a truth assignment that sets at most k variables to true, considering k as the parameter. One could separate the ... more >>>
We investigate the parameters in terms of which the complexity of sublinear-time algorithms should be expressed. Our goal is to find input parameters that are tailored to the combinatorics of the specific problem being studied and design algorithms that run faster when these parameters are small. This direction enables us ... more >>>
We derive the first lower bound results on kernel sizes of parameterized problems. The same idea also allows us to sometimes "de-parameterize"
parameterized algorithms.
We construct a family of planar graphs $(G_n: n\geq 4)$, where $G_n$ has $n$ vertices including a source vertex $s$ and a sink vertex $t$, and edge weights that change linearly with a parameter $\lambda$ such that, as $\lambda$ increases, the cost of the shortest path from $s$ to $t$ ... more >>>
In this paper we investigate the parametrized
complexity of the problems MaxSat and MaxCut using the
framework developed by Downey and Fellows.
Let $G$ be an arbitrary graph having $n$ vertices and $m$
edges, and let $f$ be an arbitrary CNF formula with $m$
clauses on $n$ variables. We improve ...
more >>>
We initiate the study of the proof complexity of propositional encoding of (weak cases of) concrete independence results. In particular we study the proof complexity of Paris-Harrington's Large Ramsey Theorem. We prove a conditional lower bound in Resolution and a quasipolynomial upper bound in bounded-depth Frege.
more >>>We prove a new lower bound on the parity decision tree complexity $D_{\oplus}(f)$ of a Boolean function $f$. Namely, granularity of the Boolean function $f$ is the smallest $k$ such that all Fourier coefficients of $f$ are integer multiples of $1/2^k$. We show that $D_{\oplus}(f)\geq k+1$.
This lower bound is ... more >>>
A propositional proof system is \emph{weakly automatizable} if there
is a polynomial time algorithm which separates satisfiable formulas
from formulas which have a short refutation in the system, with
respect to a given length bound. We show that if the resolution
proof system is weakly automatizable, ...
more >>>
Branching programs are a well-established computation model
for Boolean functions, especially read-once branching programs
have been studied intensively. Exponential lower bounds for
deterministic and nondeterministic read-once branching programs
are known for a long time. On the other hand, the problem of
proving superpolynomial lower bounds ...
more >>>
We study the complexity of computing symmetric and threshold functions by constant-depth circuits with Parity gates, also known as AC$^0[\oplus]$ circuits. Razborov (1987) and Smolensky (1987, 1993) showed that Majority requires depth-$d$ AC$^0[\oplus]$ circuits of size $2^{\Omega(n^{1/2(d-1)})}$. By using a divide-and-conquer approach, it is easy to show that Majority can ... more >>>
We consider the problem of counting the number of spanning trees in planar graphs. We prove tight bounds on the complexity of the problem, both in general and especially in the modular setting. We exhibit the problem to be complete for Logspace when the modulus is 2^k, for constant k. ... more >>>
The Turing and many-one completeness notions for $\NP$ have been
previously separated under {\em measure}, {\em genericity}, and {\em
bi-immunity} hypotheses on NP. The proofs of all these results rely
on the existence of a language in NP with almost everywhere hardness.
In this paper we separate the same NP-completeness ... more >>>
We show that assuming the Exponential Time Hypothesis, the Partial Minimum Branching Program Size Problem (MBPSP*) requires superpolynomial time. This result also applies to the partial minimization problems for many interesting subclasses of branching programs, such as read-$k$ branching programs and OBDDs.
Combining these results with our recent result (Glinskih ... more >>>
We introduce a new concept, which we call partition expanders. The basic idea is to study quantitative properties of graphs in a slightly different way than it is in the standard definition of expanders. While in the definition of expanders it is required that the number of edges between any ... more >>>
The $H$-matching problem asks to partition the vertices of an input graph $G$
into sets of size $k=|V(H)|$, each of which induces a subgraph of $G$
isomorphic to $H$. The $H$-matching problem has been classified as polynomial
or NP-complete depending on whether $k\leq 2$ or not. We consider a variant
more >>>
Our main result implies the following easily formulated statement. The set of edges E of every finite bipartite graph can be split into poly(log |E|) subsets so the all the resulting bipartite graphcs are almost regular. The latter means that the ratio between the maximal and minimal non-zero degree of ... more >>>
We give a new method for analysing the mixing time of a Markov chain using
path coupling with stopping times. We apply this approach to two hypergraph
problems. We show that the Glauber dynamics for independent sets in a
hypergraph mixes rapidly as long as the maximum degree $\Delta$ of ...
more >>>
We consider strings which are succinctly described. The description
is in terms of straight-line programs in which the constants are
symbols and the only operation is the concatenation. Such
descriptions correspond to the systems of recurrences or to
context-free grammars generating single words. The descriptive ...
more >>>
We define and study the model of patterned non-determinism in bipartite communication complexity, denoted by $PNP^{X\leftrightarrow Y}$.
It generalises the known models $UP^{X\leftrightarrow Y}$ and $FewP^{X\leftrightarrow Y}$ through relaxing the constraints on the witnessing structure of the underlying $NP^{X\leftrightarrow Y}$-protocol.
It is shown that for the case of total functions ...
more >>>
This paper strengthens the low-error PCP characterization of NP, coming
closer to the ultimate BGLR conjecture. Namely, we prove that witnesses for
membership in any NP language can be verified with a constant
number of accesses, and with an error probability exponentially
small in the ...
more >>>
Modern cryptography fundamentally relies on the assumption that the adversary trying to break the scheme is computationally bounded. This assumption lets us construct cryptographic protocols and primitives that are known to be impossible otherwise. In this work we explore the effect of bounding the adversary's power in other information theoretic ... more >>>
Assuming the existence of one-way functions, we show that there is no
polynomial-time, differentially private algorithm $A$ that takes a database
$D\in (\{0,1\}^d)^n$ and outputs a ``synthetic database'' $\hat{D}$ all of whose two-way
marginals are approximately equal to those of $D$. (A two-way marginal is the fraction
of database rows ...
more >>>
We develop new techniques to incorporate the recently proposed ``short code" (a low-degree version of the long code) into the construction and analysis of PCPs in the classical ``Label Cover + Fourier Analysis'' framework. As a result, we obtain more size-efficient PCPs that yield improved hardness results for approximating CSPs ... more >>>
We show that combining two different hypothetical enhancements to quantum computation---namely, quantum advice and non-collapsing measurements---would let a quantum computer solve any decision problem whatsoever in polynomial time, even though neither enhancement yields extravagant power by itself. This complements a related result due to Raz. The proof uses locally decodable ... more >>>
Analyzing refutations of the well known
pebbling formulas we prove some new strong connections between pebble games and algebraic proof system, showing that
there is a parallelism between the reversible, black and black-white pebbling games on one side, and
the three algebraic proof systems NS, MC and ...
more >>>
The reversible pebble game is a combinatorial game played on rooted DAGs. This game was introduced by Bennett (1989) motivated by applications in designing space efficient reversible algorithms. Recently, Chan (2013) showed that the reversible pebble game number of any DAG is the same as its Dymond-Tompa pebble number and ... more >>>
We contribute to the program of proving lower bounds on the size of branching programs solving the Tree Evaluation Problem introduced by Cook et al.(2011). Proving an exponential lower bound for the size of the non-deterministic thrifty branching programs would separate NL from P under the thrifty hypothesis. In this ... more >>>
In this paper we present a pseudo-deterministic $RNC$ algorithm for finding perfect matchings in bipartite graphs. Specifically, our algorithm is a randomized parallel algorithm which uses $poly(n)$ processors, $poly({\log n})$ depth, $poly(\log n)$ random bits, and outputs for each bipartite input graph a unique perfect matching with high probability. That ... more >>>
We show that the parameterized problem Perfect Code belongs to W[1].
This result closes an old open question, because it was often
conjectured that Perfect Code could be a natural problem having
complexity degree intermediate between W[1] and W[2]. This result
also shows W[1]-membership of the parameterized problem Weighted
more >>>
We prove that Perfect Matching in bipartite planar graphs is in UL, improving upon
the previous bound of SPL (see [DKR10]) on its space complexity. We also exhibit space
complexity bounds for some related problems. Summarizing, we show that, constructing:
1. a Perfect Matching in bipartite planar graphs is in ...
more >>>
Non-interactive zero-knowledge (NIZK) systems are
fundamental cryptographic primitives used in many constructions,
including CCA2-secure cryptosystems, digital signatures, and various
cryptographic protocols. What makes them especially attractive, is
that they work equally well in a concurrent setting, which is
notoriously hard for interactive zero-knowledge protocols. However,
while for interactive zero-knowledge we ...
more >>>
In this work we consider the interplay between multiprover interactive proofs, quantum
entanglement, and zero knowledge proofs — notions that are central pillars of complexity theory,
quantum information and cryptography. In particular, we study the relationship between the
complexity class MIP$^*$ , the set of languages decidable by multiprover interactive ...
more >>>
This text is a development of a preprint of Ankit Gupta.
We present an approach for devising a deterministic polynomial time whitekbox identity testing (PIT) algorithm for depth-$4$ circuits with bounded top fanin.
This approach is similar to Kayal-Saraf approach for depth-$3$ circuits. Kayal and Saraf based their ...
more >>>
In the *Conditional Disclosure of Secrets* (CDS) problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold $n$-bit inputs $x$ and $y$ respectively, wish to release a common secret $z$ to Carol (who knows both $x$ and $y$) if and only if the input $(x,y)$ satisfies ... more >>>
Graph Isomorphism is the prime example of a computational problem with a wide difference between the best known lower and upper bounds on its complexity. There is a significant gap between extant lower and upper bounds for planar graphs as well. We bridge the gap for this natural and ... more >>>
Planarity Testing is the problem of determining whether a given graph is planar while planar embedding is the corresponding construction problem.
The bounded space complexity of these problems has been determined to be Logspace by Allender and Mahajan with the aid of Reingold's result . Unfortunately, the algorithm is quite ...
more >>>
We provide new upper bounds on the complexity of the s-t-connectivity problem in planar graphs, thereby providing additional evidence that this problem is not complete for NL. This also yields a new upper bound on the complexity of computing edit distance. Building on these techniques, we provide new upper bounds ... more >>>
To compare the complexity of the perfect matching problem for general graphs with that for planar graphs, one might try to come up with a reduction from the perfect matching problem to the planar perfect matching problem.
The obvious way to construct such a reduction is via a {\em planarizing ...
more >>>
The planted clique conjecture states that no polynomial-time algorithm can find a hidden clique of size $k \ll \sqrt{n}$ in an $n$-vertex Erd\H{o}s--R\'enyi random graph with a $k$-clique planted. In this paper, we prove the equivalence among many (in fact, \emph{most}) variants of planted clique conjectures, such as search ... more >>>
Recently, Pasarkar, Papadimitriou, and Yannakakis (ITCS 2023) have introduced the new TFNP subclass called PLC that contains the class PPP; they also have proven that several search problems related to extremal combinatorial principles (e.g., Ramsey’s theorem and the Sunflower lemma) belong to PLC. This short paper shows that the class ... more >>>
We prove an essentially sharp $\tilde\Omega(n/k)$ lower bound on the $k$-round distributional complexity of the $k$-step pointer chasing problem under the uniform distribution, when Bob speaks first. This is an improvement over Nisan and Wigderson's $\tilde \Omega(n/k^2)$ lower bound. A key part of the proof is using triangular discrimination instead ... more >>>
We consider the well known problem of determining the k'th
vertex reached by chasing pointers in a directed graph of
out-degree 1. The famous "pointer doubling" technique
provides an O(log k) parallel time algorithm on a
Concurrent-Read Exclusive-Write (CREW) PRAM. We prove that ...
more >>>
We study pointer programs as a model of structured computation within LOGSPACE. Pointer programs capture the common description of LOGSPACE algorithms as programs that take as input some structured data (e.g. a graph) and that store in memory only a constant number of pointers to the input (e.g. to the ... more >>>
The ``analyst's traveling salesman theorem'' of geometric
measure theory characterizes those subsets of Euclidean
space that are contained in curves of finite length.
This result, proven for the plane by Jones (1990) and
extended to higher-dimensional Euclidean spaces by
Okikiolu (1991), says that a bounded set $K$ is contained
more >>>
We prove that, for all binary-input symmetric memoryless channels, polar codes enable reliable communication at rates within $\epsilon > 0$ of the Shannon capacity with a block length, construction complexity, and decoding complexity all bounded by a *polynomial* in $1/\epsilon$. Polar coding gives the *first known explicit construction* with rigorous ... more >>>
We initiate the formal treatment of cryptographic constructions based on the hardness of computing remainders modulo an ideal in multivariate polynomial rings. Of particular interest to us is a class of schemes known as "Polly Cracker." We start by formalising and studying the relation between the ideal remainder problem and ... more >>>
We prove that poly-sized AC0 circuits cannot distinguish a poly-logarithmically independent distribution from the uniform one. This settles the 1990 conjecture by Linial and Nisan [LN90]. The only prior progress on the problem was by Bazzi [Baz07], who showed that O(log^2 n)-independent distributions fool poly-size DNF formulas. Razborov [Raz08] has ... more >>>
Blackbox polynomial identity testing (PIT) affords 'extreme variable-bootstrapping' (Agrawal et al, STOC'18; PNAS'19; Guo et al, FOCS'19). This motivates us to study log-variate read-once oblivious algebraic branching programs (ROABP). We restrict width of ROABP to a constant and study the more general sum-of-ROABPs model. We give the first poly($s$)-time blackbox ... more >>>
We consider the non-uniform multicommodity buy-at-bulk network
design problem. In this problem we are given a graph $G(V,E)$ with
two cost functions on the edges, a buy cost $b:E\longrightarrow \RR^+$ and a rent cost
$r:E\longrightarrow\RR^+$, and a set of source-sink pairs $s_i,t_i\in V$ ($1\leq i\leq \alpha$)
with each pair $i$ ...
more >>>
A private approximation of a function f is defined to be another function F that approximates f in the usual sense, but does not reveal any information about the input x other than what can be deduced from f(x). We give the first two-party private approximation of the Euclidean distance ... more >>>
We consider Arthur-Merlin proof systems where (a) Arthur is a probabilistic quasi-polynomial time Turing machine
and (AMQ)(b) Arthur is a probabilistic exponential time Turing machine (AME). We prove two new results related to these classes.
It is known \cite{BHZ87} that if every language in coNP has a
constant-round interactive proof system, then the polynomial hierarchy
collapses. On the other hand, Lund {\em et al}.\ \cite{LFKN92} have shown that
#SAT, the #P-complete function that outputs the number of satisfying
assignments of a Boolean ...
more >>>
We focus on the problem of computing an $\epsilon$-Nash equilibrium of a bimatrix game, when $\epsilon$ is an absolute constant.
We present a simple algorithm for computing a $\frac{3}{4}$-Nash equilibrium for any bimatrix game in strongly polynomial time and
we next show how to extend this algorithm so as to ...
more >>>
We introduce a new method for proving explicit upper bounds on the VC
Dimension of general functional basis networks, and prove as an
application, for the first time, the VC Dimension of analog neural
networks with the sigmoid activation function $\sigma(y)=1/1+e^{-y}$
to ...
more >>>
We prove that for every 3-player (3-prover) game $\mathcal G$ with value less than one, whose query distribution has the support $\mathcal S = \{(1,0,0), (0,1,0), (0,0,1)\}$ of hamming weight one vectors, the value of the $n$-fold parallel repetition $\mathcal G^{\otimes n}$ decays polynomially fast to zero; that is, there ... more >>>
We initiate an in-depth proof-complexity analysis of polynomial calculus (Q-PC) for Quantified Boolean Formulas (QBF). In the course of this we establish a tight proof-size characterisation of Q-PC in terms of a suitable circuit model (polynomial decision lists). Using this correspondence we show a size-degree relation for Q-PC, similar in ... more >>>
For every $n >0$, we show the existence of a CNF tautology over $O(n^2)$ variables of width $O(\log n)$ such that it has a Polynomial Calculus Resolution refutation over $\{0,1\}$ variables of size $O(n^3polylog(n))$ but any Polynomial Calculus refutation over $\{+1,-1\}$ variables requires size $2^{\Omega(n)}$. This shows that Polynomial Calculus ... more >>>
We show that if a $k$-CNF requires width $w$ to refute in resolution, then it requires space $\sqrt w$ to refute in polynomial calculus, where the space of a polynomial calculus refutation is the number of monomials that must be kept in memory when working through the proof. This is ... more >>>
Proving super-logarithmic data structure lower bounds in the static \emph{group model} has been a fundamental challenge in computational geometry since the early 80's. We prove a polynomial ($n^{\Omega(1)}$) lower bound for an explicit range counting problem of $n^3$ convex polygons in $\R^2$ (each with $n^{\tilde{O}(1)}$ facets/semialgebraic-complexity), against linear storage arithmetic ... more >>>
Fix a prime $p$. Given a positive integer $k$, a vector of positive integers ${\bf \Delta} = (\Delta_1, \Delta_2, \dots, \Delta_k)$ and a function $\Gamma: \mathbb{F}_p^k \to \F_p$, we say that a function $P: \mathbb{F}_p^n \to \mathbb{F}_p$ is $(k,{\bf \Delta},\Gamma)$-structured if there exist polynomials $P_1, P_2, \dots, P_k:\mathbb{F}_p^n \to \mathbb{F}_p$ ... more >>>
The elimination
problem is classical:
implicitly express one of the variables occurring in a finite
system of polynomial equations as an algebraic function of a
designated subset of the remaining variables. Solutions to this
problem by resultants, or more comprehensively by
use of Gr\"{o}bner basis methods are available. In this ...
more >>>
We study the identity testing problem for depth $3$ arithmetic circuits ($\Sigma\Pi\Sigma$ circuits). We give the first deterministic polynomial time identity test for $\Sigma\Pi\Sigma$ circuits with bounded top fanin. We also show that the {\em rank} of a minimal and simple $\Sigma\Pi\Sigma$ circuit with bounded top fanin, computing zero, can ... more >>>
We introduce a hitting set generator for Polynomial Identity Testing
based on evaluations of low-degree univariate rational functions at
abscissas associated with the variables. Despite the univariate
nature, we establish an equivalence up to rescaling with a generator
introduced by Shpilka and Volkovich, which has a similar structure but
uses ...
more >>>
Representations of boolean functions as polynomials (over rings) have
been used to establish lower bounds in complexity theory. Such
representations were used to great effect by Smolensky, who
established that MOD q \notin AC^0[MOD p] (for distinct primes p, q)
by representing AC^0[MOD p] functions as low-degree multilinear
polynomials over ...
more >>>
We study the complexity of computing Boolean functions on general
Boolean domains by polynomial threshold functions (PTFs). A typical
example of a general Boolean domain is $\{1,2\}^n$. We are mainly
interested in the length (the number of monomials) of PTFs, with
their degree and weight being of secondary interest. We ...
more >>>
We study in this paper randomized algorithms to approximate the mixed volume of well-presented convex compact sets.
Our main result is a poly-time algorithm which approximates $V(K_1,...,K_n)$ with multiplicative error $e^n$ and
with better rates if the affine dimensions of most of the sets $K_i$ are small.\\
Our approach is ...
more >>>
We give the first polynomial time approximability characterization
of dense weighted instances of MAX-CUT, and some other dense
weighted NP-hard problems in terms of their empirical weight
distributions. This gives also the first almost sharp
characterization of inapproximability of unweighted 0,1
MAX-BISECTION instances ...
more >>>
It is known that large fragments of the class of dense
Minimum Constraint Satisfaction (MIN-CSP) problems do not have
polynomial time approximation schemes (PTASs) contrary to their
Maximum Constraint Satisfaction analogs. In this paper we prove,
somewhat surprisingly, that the minimum satisfaction of dense
instances of kSAT-formulas, ...
more >>>
We give polynomial time approximation schemes for the problem
of partitioning an input set of n points into a fixed number
k of clusters so as to minimize the sum over all clusters of
the total pairwise distances in a cluster. Our algorithms work
for arbitrary metric spaces as well ...
more >>>
We survey recent results on the existence of polynomial time
approximation schemes for some dense instances of NP-hard
optimization problems. We indicate further some inherent limits
for existence of such schemes for some other dense instances of
the optimization problems.
Advice is supplementary information that enhances the computational
power of an underlying computation. This paper focuses on advice that
is given in the form of a pure quantum state. The notion of advised
quantum computation has a direct connection to non-uniform quantum
circuits and tally languages. The paper examines the ...
more >>>
The Tutte-Gr\"othendieck polynomial $T(G;x,y)$ of a graph $G$
encodes numerous interesting combinatorial quantities associated
with the graph. Its evaluation in various points in the $(x,y)$
plane give the number of spanning forests of the graph, the number
of its strongly connected orientations, the number of its proper
$k$-colorings, the (all ...
more >>>
This paper studies distributions which
can be ``approximated'' by sampling algorithms in time polynomial in
the length of their outputs. First, it is known that if
polynomial-time samplable distributions are polynomial-time
computable, then NP collapses to P. This paper shows by a simple
...
more >>>
We define a hierarchy of complexity classes that lie between P and RP, yielding a new way of quantifying partial progress towards the derandomization of RP. A standard approach in derandomization is to reduce the number of random bits an algorithm uses. We instead focus on a model of computation ... more >>>
We give a deterministic, polynomial-time algorithm for approximately counting the number of {0,1}-solutions to any instance of the knapsack problem. On an instance of length n with total weight W and accuracy parameter eps, our algorithm produces a (1 + eps)-multiplicative approximation in time poly(n,log W,1/eps). We also give algorithms ... more >>>
In Descriptive Complexity, there is a vast amount of literature on
decision problems, and their classes such as \textbf{P, NP, L and NL}. ~
However, research on the descriptive complexity of optimisation problems
has been limited. In a previous paper [Man], we characterised
the optimisation versions of \textbf{P} via expressions ...
more >>>
A randomized algorithm for a search problem is *pseudodeterministic* if it produces a fixed canonical solution to the search problem with high probability. In their seminal work on the topic, Gat and Goldwasser posed as their main open problem whether prime numbers can be pseudodeterministically constructed in polynomial time.
... more >>>Bennett and Gill (1981) showed that P^A != NP^A != coNP^A for a random
oracle A, with probability 1. We investigate whether this result
extends to individual polynomial-time random oracles. We consider two
notions of random oracles: p-random oracles in the sense of
martingales and resource-bounded measure (Lutz, 1992; Ambos-Spies ...
more >>>
We show that every language in NP has a PCP verifier that tosses $O(\log n)$ random coins, has perfect completeness, and a soundness error of at most $1/poly(n)$, while making at most $O(poly\log\log n)$ queries into a proof over an alphabet of size at most $n^{1/poly\log\log n}$. Previous constructions that ... more >>>
We show an equivalence between 1-query quantum algorithms and representations by degree-2 polynomials.
Namely, a partial Boolean function $f$ is computable by a 1-query quantum algorithm with error bounded by $\epsilon<1/2$ iff $f$ can be approximated by a degree-2 polynomial with error bounded by $\epsilon'<1/2$.
This result holds for two ...
more >>>
We study several problems in which an {\em unknown} distribution over an {\em unknown} population of vectors needs to be recovered from partial or noisy samples, each of which nearly completely erases or obliterates the original vector. For example, consider a distribution $p$ over a population $V \subseteq \{0,1\}^n$. A ... more >>>
In a recent work, O'Donnell, Servedio and Tan (STOC 2019) gave explicit pseudorandom generators (PRGs) for arbitrary $m$-facet polytopes in $n$ variables with seed length poly-logarithmic in $m,n$, concluding a sequence of works in the last decade, that was started by Diakonikolas, Gopalan, Jaiswal, Servedio, Viola (SICOMP 2010) and Meka, ... more >>>
We prove that Kilian's four-message succinct argument system is post-quantum secure in the standard model when instantiated with any probabilistically checkable proof and any collapsing hash function (which in turn exist based on the post-quantum hardness of Learning with Errors).
At the heart of our proof is a new ... more >>>
A major difficulty in quantum rewinding is the fact that measurement is destructive: extracting information from a quantum state irreversibly changes it. This is especially problematic in the context of zero-knowledge simulation, where preserving the adversary's state is essential.
In this work, we develop new techniques for ...
more >>>
We consider sets of strings with high Kolmogorov complexity, mainly
in resource-bounded settings but also in the traditional
recursion-theoretic sense. We present efficient reductions, showing
that these sets are hard and complete for various complexity classes.
In particular, in addition to the usual Kolmogorov complexity measure
K, ...
more >>>
In this paper, we initiate study of the computational power of adaptive and non-adaptive monotone decision trees – decision trees where each query is a monotone function on the input bits. In the most general setting, the monotone decision tree height (or size) can be viewed as a measure of ... more >>>
We study EP, the subclass of NP consisting of those
languages accepted by NP machines that when they accept always have a
number of accepting paths that is a power of two. We show that the
negation equivalence problem for OBDDs (ordered binary decision
diagrams) ...
more >>>
We show that the counting classes AWPP and APP [Li 1993] are more robust
than previously thought. Our results identify asufficient condition for
a language to be low for PP, and we show that this condition is at least
as weak as other previously studied criteria. Our results imply that
more >>>
Many classical theorems in combinatorics establish the emergence of substructures within sufficiently large collections of objects. Well-known examples are Ramsey's theorem on monochromatic subgraphs and the Erdos-Rado sunflower lemma. Implicit versions of the corresponding total search problems are known to be PWPP-hard; here "implicit" means that the collection is represented ... more >>>
We show that for $k \geq 5$, the PPSZ algorithm for $k$-SAT runs exponentially faster if there is an exponential number of satisfying assignments. More precisely, we show that for every $k\geq 5$, there is a strictly increasing function $f: [0,1] \rightarrow \mathbb{R}$ with $f(0) = 0$ that has the ... more >>>
PPSZ, for long time the fastest known algorithm for k-SAT, works by going through the variables of the input formula in random order; each variable is then set randomly to 0 or 1, unless the correct value can be inferred by an efficiently implementable rule (like small-width resolution; or being ... more >>>
We study the success probability of the PPSZ algorithm on $(d,k)$-CSP formulas. We greatly simplify the analysis of Hertli, Hurbain, Millius, Moser, Szedlak, and myself for the notoriously difficult case that the input formula has more than one satisfying assignment.
more >>>We unconditionally prove there exists a promise problem in promise ZSUBEXP that cannot be solved in promise RP.
The proof technique builds upon Kabanets' easy witness method [Kab01] as implemented by Impagliazzo et. al [IKW02], with a separate diagonalization carried out on each of the two alternatives in the ...
more >>>
In this work we consider the following problem: in a Multi-Prover environment, how close can we get to prove the validity of an NP statement in Zero-Knowledge ? We exhibit a set of two novel Zero-Knowledge protocols for the 3-COLorability problem that use two (local) provers or three (entangled) provers ... more >>>
Let $X$ be a random variable distributed over $n$-bit strings with $H(X) \ge n - k$, where $k \ll n$. Using subadditivity we know that a random coordinate looks random. Meir and Wigderson [TR17-149] showed a random coordinate looks random to an adversary who is allowed to query around $n/k$ ... more >>>
Consider a random sequence of $n$ bits that has entropy at least $n-k$, where $k\ll n$. A commonly used observation is that an average coordinate of this random sequence is close to being uniformly distributed, that is, the coordinate “looks random”. In this work, we prove a stronger result that ... more >>>
A new notion of predictive complexity and corresponding amount of
information are considered.
Predictive complexity is a generalization of Kolmogorov complexity
which bounds the ability of any algorithm to predict elements of
a sequence of outcomes. We consider predictive complexity for a wide class
of bounded loss functions which ...
more >>>
We introduce the notion of a plain basis for a co-clone in Post's lattice. Such a basis is a set of relations B such that every constraint C over a relation in the co-clone is logically equivalent to a conjunction of equalities and constraints over B and the same variables ... more >>>
We introduce the concept of a randomness steward, a tool for saving random bits when executing a randomized estimation algorithm $\mathrm{Est}$ on many adaptively chosen inputs. For each execution, the chosen input to $\mathrm{Est}$ remains hidden from the steward, but the steward chooses the randomness of $\mathrm{Est}$ and, crucially, is ... more >>>
We study several old and new algorithms for computing lower
and upper bounds for the Steiner problem in networks using dual-ascent
and primal-dual strategies. These strategies have been proven to be
very useful for the algorithmic treatment of the Steiner problem. We
show that none of the known algorithms ...
more >>>
We study private computations in information-theoretical settings on
networks that are not 2-connected. Non-2-connected networks are
``non-private'' in the sense that most functions cannot privately be
computed on such networks. We relax the notion of privacy by
introducing lossy private protocols, which generalize private
protocols. We measure the information each ...
more >>>
Many approximation algorithms have been presented in the last decades
for hard search problems. The focus of this paper is on cryptographic
applications, where it is desired to design algorithms which do not
leak unnecessary information. Specifically, we are interested in
private approximation algorithms -- efficient algorithms ...
more >>>
We study the role of connectivity of communication networks in private
computations under information theoretic settings. It will be shown that
some functions can be computed by private protocols even if the
underlying network is 1-connected but not 2-connected. Then we give a
complete characterisation of non-degenerate functions that can ...
more >>>
In model checking, program correctness on all inputs is verified
by considering the transition system underlying a given program.
In practice, the system can be intractably large.
In property testing, a property of a single input is verified
by looking at a small subset of that input.
We ...
more >>>
Non-signaling strategies are a generalization of quantum strategies that have been studied in physics over the past three decades. Recently, they have found applications in theoretical computer science, including to proving inapproximability results for linear programming and to constructing protocols for delegating computation. A central tool for these applications is ... more >>>
A new probabilistic technique for establishing the existence of certain regular combinatorial structures has been introduced by Kuperberg, Lovett, and Peled (STOC 2012). Using this technique, it can be shown that under certain conditions, a randomly chosen structure has the required properties of a $t-(n,k,?)$ combinatorial design with tiny, yet ... more >>>
We show the existence of rigid combinatorial objects which previously were not known to exist. Specifically, for a wide range of the underlying parameters, we show the existence of non-trivial orthogonal arrays, $t$-designs, and $t$-wise permutations. In all cases, the sizes of the objects are optimal up to polynomial overhead. ... more >>>
Understanding the relationship between the worst-case and average-case complexities of $\mathrm{NP}$ and of other subclasses of $\mathrm{PH}$ is a long-standing problem in complexity theory. Over the last few years, much progress has been achieved in this front through the investigation of meta-complexity: the complexity of problems that refer to the ... more >>>
A recent series of breakthroughs initiated by Spielman and Teng culminated in the construction of nearly linear time Laplacian solvers, approximating the solution of a linear system $L x=b$, where $L$ is the normalized Laplacian of an undirected graph. In this paper we study the space complexity of the problem.
more >>>
Ordered binary decision diagrams (OBDDs) are well established tools to
represent Boolean functions. There are a lot of results concerning
different types of generalizations of OBDDs. The same time, the power
of the most general form of OBDD, namely probabilistic (without bounded
error) OBDDs, is not studied enough. In ...
more >>>
Various types of probabilistic proof systems have played
a central role in the development of computer science in the last decade.
In this exposition, we concentrate on three such proof systems ---
interactive proofs, zero-knowledge proofs,
and probabilistic checkable proofs --- stressing the essential
role of randomness in each ...
more >>>
In this paper we introduce a new type of probabilistic search algorithm, which we call the
{\it Bellagio} algorithm: a probabilistic algorithm which is guaranteed to run in expected polynomial time,
and to produce a correct and {\it unique} solution with high probability.
We argue the applicability of such algorithms ...
more >>>
We define and examine several probabilistic operators ranging over sets
(i.e., operators of type 2), among them the formerly studied
ALMOST-operator. We compare their power and prove that they all coincide
for a wide variety of classes. As a consequence, we characterize the
ALMOST-operator which ranges over infinite objects ...
more >>>
We present a weaker variant of the PCP Theorem that admits a
significantly easier proof. In this
variant the prover only has $n^t$ time to compute each
bit of his answer, for an arbitray but fixed constant
$t$, in contrast to
being all powerful. We show that
3SAT ...
more >>>
The error probability of Probabilistically Checkable Proof (PCP)
systems can be made exponentially small in the number of queries
by using sequential repetition. In this paper we are interested
in determining the precise rate at which the error goes down in
an optimal protocol, and we make substantial progress toward ...
more >>>
Motivated by the inapproximability of reconfiguration problems, we present a new PCP-type characterization of PSPACE, which we call a probabilistically checkable reconfiguration proof (PCRP): Any PSPACE computation can be encoded into an exponentially long sequence of polynomially long proofs such that every adjacent pair of the proofs differs in at ... more >>>
We consider the problem of determining whether a given
function f : {0,1}^n -> {0,1} belongs to a certain class
of Boolean functions F or whether it is far from the class.
More precisely, given query access to the function f and given
a distance parameter epsilon, we would ...
more >>>
If $G$ is a group, we say a subset $S$ of $G$ is product-free if the equation $xy=z$ has no solutions with $x,y,z \in S$. For $D \in \mathbb{N}$, a group $G$ is said to be $D$-quasirandom if the minimal dimension of a nontrivial complex irreducible representation of $G$ is ... more >>>
Polynomial identity testing (PIT) is the problem of checking whether a given
arithmetic circuit is the zero circuit. PIT ranks as one of the most important
open problems in the intersection of algebra and computational complexity. In the last
few years, there has been an impressive progress on this ...
more >>>
We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.
more >>>A classic result due to Schaefer (1978) classifies all constraint satisfaction problems (CSPs) over the Boolean domain as being either in $\mathsf{P}$ or NP-hard. This paper considers a promise-problem variant of CSPs called PCSPs. A PCSP over a finite set of pairs of constraints $\Gamma$ consists of a pair $(\Psi_P, ... more >>>
We show that for any constant a, ZPP/b(n) strictly contains
ZPTIME(n^a)/b(n) for some b(n) = O(log n log log n). Our techniques
are very general and give the same hierarchy for all the common
promise time classes including RTIME, NTIME \cap coNTIME, UTIME,
MATIME, AMTIME and BQTIME.
We show a ... more >>>
The Acceptance Probability Estimation Problem (APEP) is to additively approximate the acceptance probability of a Boolean circuit. This problem admits a probabilistic approximation scheme. A central question is whether we can design a pseudodeterministic approximation algorithm for this problem: a probabilistic polynomial-time algorithm that outputs a canonical approximation with high ... more >>>
We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS), the algebraic proof system recently proposed by Grochow and Pitassi, where the circuits comprising the proof come from various restricted algebraic circuit classes. This mimics an established research direction in the ...
more >>>
A canonical communication problem ${\rm Search}(\phi)$ is defined for every unsatisfiable CNF $\phi$: an assignment to the variables of $\phi$ is distributed among the communicating parties, they are to find a clause of $\phi$ falsified by this assignment. Lower bounds on the randomized $k$-party communication complexity of ${\rm Search}(\phi)$ in ... more >>>
Recently, the proof system MICE for the model counting problem #SAT was introduced by Fichte, Hecher and Roland (SAT’22). As demonstrated by Fichte et al., the system MICE can be used for proof logging for state-of-the-art #SAT solvers.
We perform a proof-complexity study of MICE. For this we first simplify ...
more >>>
Proof systems for quantified Boolean formulas (QBFs) provide a theoretical underpinning for the performance of important
QBF solvers. However, the proof complexity of these proof systems is currently not well understood and in particular
lower bound techniques are missing. In this paper we exhibit a new and elegant proof technique ...
more >>>
For quantified Boolean formulas (QBF), a resolution system with a symmetry rule was recently introduced by Kauers and Seidl (Inf. Process. Lett. 2018). In this system, many formulas hard for QBF resolution admit short proofs.
Kauers and Seidl apply the symmetry rule on symmetries of the original formula. Here we ... more >>>
The proof complexity of Quantified Boolean Formulas (QBF) relates to both QBF solving and OBF certification. One method to p-simulate a QBF proof system is by formalising the soundness of its strategy extraction in propositional logic. In this work we illustrate how to use extended QBF Frege to simulate LD-Q(Drrs)-Res, ... more >>>
One of the starting points of propositional proof complexity is the seminal paper by Cook and Reckhow (JSL 79), where they defined
propositional proof systems as poly-time computable functions which have all propositional tautologies as their range. Motivated by provability consequences in bounded arithmetic, Cook and Krajicek (JSL 07) have ...
more >>>
We show that every language in NP has a probablistic verifier
that checks membership proofs for it using
logarithmic number of random bits and by examining a
<em> constant </em> number of bits in the proof.
If a string is in the language, then there exists a proof ...
more >>>
In this survey, I discuss the general question of what evidence can we use to predict the answer for open questions in computational complexity, as well as the concrete evidence currently known for two conjectures: Khot's Unique Games Conjecture and Feige's Random 3SAT Hypothesis.
Proofs of proximity are probabilistic proof systems in which the verifier only queries a sub-linear number of input bits, and soundness only means that, with high probability, the input is close to an accepting input. In their minimal form, called Merlin-Arthur proofs of proximity (MAP), the verifier receives, in addition ... more >>>
Distribution testing is an area of property testing that studies algorithms that receive few samples from a probability distribution D and decide whether D has a certain property or is far (in total variation distance) from all distributions with that property. Most natural properties of distributions, however, require a large ... more >>>
In certain applications there may only be positive samples available to
to learn concepts of a class of interest,
and this has to be done properly, i.e. the
hypothesis space has to coincide with the concept class,
and without false positives, i.e. the hypothesis always has be a subset ...
more >>>
We prove that proper PAC learnability implies compression. Namely, if a concept $C \subseteq \Sigma^X$ is properly PAC learnable with $d$ samples, then $C$ has a sample compression scheme of size $2^{O(d)}$.
In particular, every boolean concept class with constant VC dimension has a sample compression scheme of constant size. ...
more >>>
For Boolean functions $f:\{0,1\}^n \to \{0,1\}$ and $g:\{0,1\}^m \to \{0,1\}$, the function composition of $f$ and $g$ denoted by $f\circ g : \{0,1\}^{nm} \to \{0,1\}$ is the value of $f$ on $n$ inputs, each of them is the calculation of $g$ on a distinct set of $m$ Boolean variables. Motivated ... more >>>
We study several properties of sets that are complete for NP.
We prove that if $L$ is an NP-complete set and $S \not\supseteq L$ is a p-selective sparse set, then $L - S$ is many-one-hard for NP. We demonstrate existence of a sparse set $S \in \mathrm{DTIME}(2^{2^{n}})$
such ...
more >>>
Using a new statistical embedding of words which has similarities with the Parikh mapping, we first construct a tolerant tester for the equality of two words, whose complexity is independent of the string size, where the distance between inputs is measured by the normalized edit distance with moves. As a ... more >>>
In this paper, we consider the question of determining whether
a function $f$ has property $P$ or is $\e$-far from any
function with property $P$.
The property testing algorithm is given a sample of the value
of $f$ on instances drawn according to some distribution.
In some cases,
more >>>
In this paper, we study linear and quadratic Boolean functions in the context of property testing. We do this by observing that the query complexity of testing properties of linear and quadratic functions can be characterized in terms of the complexity in another model of computation called parity decision trees. ... more >>>
We develop a new technique for proving lower bounds in property testing, by showing a strong connection between testing and communication complexity. We give a simple scheme for reducing communication problems to testing problems, thus allowing us to use known lower bounds in communication complexity to prove lower bounds in ... more >>>
For a permutation group $G$ acting on the set $\Omega$
we say that two strings $x,y\,:\,\Omega\to\boole$
are {\em $G$-isomorphic} if they are equivalent under
the action of $G$, \ie, if for some $\pi\in G$ we have
$x(i^{\pi})=y(i)$ for all $i\in\Omega$.
Cyclic Shift, Graph Isomorphism ...
more >>>
We define a new property testing model for algorithms that do not have arbitrary query access to the input, but must instead traverse it in a manner that respects the underlying data structure in which it is stored. In particular, we consider the case when the underlying data structure is ... more >>>
The primary problem in property testing is to decide whether a given function satisfies a certain property, or is far from any function satisfying it. This crucially requires a notion of distance between functions. The most prevalent notion is the Hamming distance over the {\em uniform} distribution on the domain. ... more >>>
Given two testable properties $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$, under what conditions are the union, intersection or set-difference
of these two properties also testable?
We initiate a systematic study of these basic set-theoretic operations in the context of property
testing. As an application, we give a conceptually different proof that linearity is ...
more >>>
The first part of this thesis strengthens the low-error PCP
characterization of NP, coming closer to the upper limit of the
conjecture of~\cite{BGLR}.
In the second part we show that a boolean function over
$n$ variables can be tested for the property of depending ...
more >>>
Proof complexity, the study of the lengths of proofs in
propositional logic, is an area of study that is fundamentally connected
both to major open questions of computational complexity theory and
to practical properties of automated theorem provers. In the last
decade, there have been a number of significant advances ...
more >>>
Single-hop radio networks (SHRN) are a well studied abstraction of communication over a wireless channel. In this model, in every round, each of the $n$ participating parties may decide to broadcast a message to all the others, potentially causing collisions. We consider the SHRN model in the presence of stochastic ... more >>>
We revisit the problem of characterising the complexity of Quantum PAC learning, as introduced by Bshouty and Jackson [SIAM J. Comput.
1998, 28, 1136–1153]. Several quantum advantages have been demonstrated in this setting, however, none are generic: they apply to particular concept classes and typically only work when the distribution ...
more >>>
Succinct arguments are proof systems that allow a powerful, but untrusted, prover to convince a weak verifier that an input $x$ belongs to a language $L \in NP$, with communication that is much shorter than the $NP$ witness. Such arguments, which grew out of the theory literature, are now drawing ... more >>>
Clique-width is a graph parameter, defined by a composition mechanism
for vertex-labeled graphs, which measures in a certain sense the
complexity of a graph. Hard graph problems (e.g., problems
expressible in Monadic Second Order Logic, that includes NP-hard
problems) can be solved efficiently for graphs of certified small
clique-width. It ...
more >>>
Clique-width is a graph parameter that measures in a certain sense the
complexity of a graph. Hard graph problems (e.g., problems
expressible in Monadic Second Order Logic with second-order
quantification on vertex sets, that includes NP-hard problems) can be
solved efficiently for graphs of certified small clique-width. It is
widely ...
more >>>
We show that any proof that $promise\textrm{-}\mathcal{BPP}=promise\textrm{-}\mathcal{P}$ necessitates proving circuit lower bounds that almost yield that $\mathcal{P}\ne\mathcal{NP}$. More accurately, we show that if $promise\textrm{-}\mathcal{BPP}=promise\textrm{-}\mathcal{P}$, then for essentially any super-constant function $f(n)=\omega(1)$ it holds that $NTIME[n^{f(n)}]\not\subseteq\mathcal{P}/\mathrm{poly}$. The conclusion of the foregoing conditional statement cannot be improved (to conclude that $\mathcal{NP}\not\subseteq\mathcal{P}/\mathrm{poly}$) without ... more >>>
Hitting formulas have been studied in many different contexts at least since [Iwama 1989]. A hitting formula is a set of Boolean clauses such that any two of the clauses cannot be simultaneously falsified. [Peitl and Szeider 2022] conjectured that the family of unsatisfiable hitting formulas should contain the hardest ... more >>>
A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all members are $\delta$-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are $\delta$-close to the property. In particular, no set ... more >>>
We present a general notion of properties that
are characterized by local conditions that are invariant
under a sufficiently rich class of symmetries.
Our framework generalizes two popular models of
testing graph properties as well as the algebraic
invariances studied by Kaufman and Sudan (STOC'08).
We show that, in the ... more >>>
We continue the study of pseudo-deterministic algorithms initiated by Gat and Goldwasser
[GG11]. A pseudo-deterministic algorithm is a probabilistic algorithm which produces a fixed
output with high probability. We explore pseudo-determinism in the settings of learning and ap-
proximation. Our goal is to simulate known randomized algorithms in these settings ...
more >>>
We introduce pseudo-deterministic interactive proofs (psdAM): interactive proof systems for search problems where
the verifier is guaranteed with high probability to output the same output on different executions.
As in the case with classical interactive proofs,
the verifier is a probabilistic polynomial time algorithm interacting with an untrusted powerful prover.
A pseudo-deterministic algorithm is a (randomized) algorithm which, when run multiple times on the same input, with high probability outputs the same result on all executions. Classic streaming algorithms, such as those for finding heavy hitters, approximate counting, $\ell_2$ approximation, finding a nonzero entry in a vector (for turnstile algorithms) ... more >>>
We introduce the notion of pseudo-mixing time of a graph define as the number of steps in a random walk that suffices for generating a vertex that looks random to any polynomial-time observer, where, in addition to the tested vertex, the observer is also provided with oracle access to the ... more >>>
We devise a new combinatorial characterization for proving space lower bounds in algebraic systems like Polynomial Calculus (Pc) and Polynomial Calculus with Resolution (Pcr). Our method can be thought as a Spoiler-Duplicator game, which is capturing boolean reasoning on polynomials instead that clauses as in the case of Resolution. Hence, ... more >>>
Factoring integers is the most established problem on which
cryptographic primitives are based. This work presents an efficient
construction of {\em pseudorandom functions} whose security is based
on the intractability of factoring. In particular, we are able to
construct efficient length-preserving pseudorandom functions where
each evaluation requires only a ...
more >>>
Boolean circuits are a model of computation. A class of Boolean circuits is called a polynomial class if the number of nodes is bounded by a polynomial function of the number of input variables. A class $C_n[s(n)]$ of Boolean functions is called learnable if there are algorithms that can approximate ... more >>>
Random walks on expanders are a central and versatile tool in pseudorandomness. If an arbitrary half of the vertices of an expander graph are marked, known Chernoff bounds for expander walks imply that the number $M$ of marked vertices visited in a long $n$-step random walk strongly concentrates around the ... more >>>
We connect the study of pseudodeterministic algorithms to two major open problems about the structural complexity of $BPTIME$: proving hierarchy theorems and showing the existence of complete problems. Our main contributions can be summarised as follows.
1. A new pseudorandom generator and its consequences: We build on techniques developed to ... more >>>
We study {\it pseudodeterministic constructions}, i.e., randomized algorithms which output the {\it same solution} on most computation paths. We establish unconditionally that there is an infinite sequence $\{p_n\}_{n \in \mathbb{N}}$ of increasing primes and a randomized algorithm $A$ running in expected sub-exponential time such that for each $n$, on input ... more >>>
A recent paper of Braverman, Cohen, and Garg (STOC 2018) introduced the concept of a pseudorandom pseudodistribution generator (PRPG), which amounts to a pseudorandom generator (PRG) whose outputs are accompanied with real coefficients that scale the acceptance probabilities of any potential distinguisher. They gave an explicit construction of PRPGs for ... more >>>
We exhibit a pseudorandom generator with nearly quadratic stretch for randomized Turing machines, which have a one-way random tape and a two-way work tape. This is the first generator for this model. Its stretch is essentially the best possible given current lower bounds. We use the generator to prove a ... more >>>
We exhibit an explicitly computable `pseudorandom' generator stretching $l$ bits into $m(l) = l^{\Omega(\log l)}$ bits that look random to constant-depth circuits of size $m(l)$ with $\log m(l)$ arbitrary symmetric gates (e.g. PARITY, MAJORITY). This improves on a generator by Luby, Velickovic and Wigderson (ISTCS '93) that achieves the same ... more >>>
We construct a pseudorandom generator which fools read-$k$ oblivious branching programs and, more generally, any linear length oblivious branching program, assuming that the sequence according to which the bits are read is known in advance. For polynomial width branching programs, the seed lengths in our constructions are $\tilde{O}(n^{1-1/2^{k-1}})$ (for the ... more >>>
We present a new approach to constructing pseudorandom generators that fool low-degree polynomials over finite fields, based on the Gowers norm. Using this approach, we obtain the following main constructions of explicitly computable generators $G : \F^s \to \F^n$ that fool polynomials over a prime field $\F$:
\begin{enumerate}
\item a ...
more >>>
The recent line of study on randomness extractors has been a great success, resulting in exciting new techniques, new connections, and breakthroughs to long standing open problems in the following five seemingly different topics: seeded non-malleable extractors, privacy amplification protocols with an active adversary, independent source extractors (and explicit Ramsey ... more >>>
In 1984, Goldreich, Goldwasser and Micali formalized the concept of pseudorandom functions and proposed a construction based on any length-doubling pseudorandom generator. Since then, pseudorandom functions have turned out to be an extremely influential abstraction, with applications ranging from message authentication to barriers in proving computational complexity lower bounds.
In ... more >>>
In this paper we give the first construction of a pseudorandom generator, with seed length $O(\log n)$, for $\mathrm{CC}_0[p]$, the class of constant-depth circuits with unbounded fan-in $\mathrm{MOD}_p$ gates, for some prime $p$. More accurately, the seed length of our generator is $O(\log n)$ for any constant error $\epsilon>0$. In ... more >>>
We define a combinatorial checkerboard to be a function $f:\{1,\ldots,m\}^d\to\{1,-1\}$ of the form $f(u_1,\ldots,u_d)=\prod_{i=1}^df_i(u_i)$ for some functions $f_i:\{1,\ldots,m\}\to\{1,-1\}$. This is a variant of combinatorial rectangles, which can be defined in the same way but using $\{0,1\}$ instead of $\{1,-1\}$. We consider the problem of constructing explicit pseudorandom generators for combinatorial ... more >>>
We construct pseudorandom generators for combinatorial shapes, which substantially generalize combinatorial rectangles, small-bias spaces, 0/1 halfspaces, and 0/1 modular sums. A function $f:[m]^n \rightarrow \{0,1\}^n$ is an $(m,n)$-combinatorial shape if there exist sets $A_1,\ldots,A_n \subseteq [m]$ and a symmetric function $h:\{0,1\}^n \rightarrow \{0,1\}$ such that $f(x_1,\ldots,x_n) = h(1_{A_1} (x_1),\ldots,1_{A_n}(x_n))$. Our ... more >>>
We prove that the pseudorandom generator introduced in Impagliazzo et al. (1994) fools group products of a given finite group. The seed length is $O(\log n \log 1 / \epsilon)$, where $n$ is the length of the word and $\epsilon$ is the error. The result is equivalent to the statement ... more >>>
Constructing pseudorandom generators for low degree polynomials has received a considerable attention in the past decade. Viola [CC 2009], following an exciting line of research, constructed a pseudorandom generator for degree d polynomials in n variables, over any prime field. The seed length used is $O(d \log{n} + d 2^d)$, ... more >>>
A Boolean function is said to have maximal sensitivity $s$ if $s$ is the largest number of Hamming neighbors of a point which differ from it in function value. We construct a pseudorandom generator with seed-length $2^{O(\sqrt{s})} \cdot \log(n)$ that fools Boolean functions on $n$ variables with maximal sensitivity at ... more >>>
A central question in derandomization is whether randomized logspace (RL) equals deterministic logspace (L). To show that RL=L, it suffices to construct explicit pseudorandom generators (PRGs) that fool polynomial-size read-once (oblivious) branching programs (roBPs). Starting with the work of Nisan, pseudorandom generators with seed-length $O(\log^2 n)$ were constructed. Unfortunately, ... more >>>
We give new pseudorandom generators for \emph{regular} read-once branching programs of small width.
A branching program is regular if the in-degree of every vertex in it is (0 or) $2$.
For every width $d$ and length $n$,
our pseudorandom generator uses a seed of length $O((\log d + \log\log n ...
more >>>
We prove that the Impagliazzo-Nisan-Wigderson (STOC 1994) pseudorandom generator (PRG) fools ordered (read-once) permutation branching programs of unbounded width with a seed length of $\widetilde{O}(\log d + \log n \cdot \log(1/\varepsilon))$, assuming the program has only one accepting vertex in the final layer. Here, $n$ is the length of the ... more >>>
We construct pseudorandom generators of seed length $\tilde{O}(\log(n)\cdot \log(1/\epsilon))$ that $\epsilon$-fool ordered read-once branching programs (ROBPs) of width $3$ and length $n$. For unordered ROBPs, we construct pseudorandom generators with seed length $\tilde{O}(\log(n) \cdot \mathrm{poly}(1/\epsilon))$. This is the first improvement for pseudorandom generators fooling width $3$ ROBPs since the work ... more >>>
We propose a new framework for constructing pseudorandom generators for $n$-variate Boolean functions. It is based on two new notions. First, we introduce fractional pseudorandom generators, which are pseudorandom distributions taking values in $[-1,1]^n$. Next, we use a fractional pseudorandom generator as steps of a random walk in $[-1,1]^n$ that ... more >>>
A recent work of Chattopadhyay et al. (CCC 2018) introduced a new framework for the design of pseudorandom generators for Boolean functions. It works under the assumption that the Fourier tails of the Boolean functions are uniformly bounded for all levels by an exponential function. In this work, we design ... more >>>
We call a pseudorandom generator $G_n:\{0,1\}^n\to \{0,1\}^m$ {\em
hard} for a propositional proof system $P$ if $P$ can not efficiently
prove the (properly encoded) statement $G_n(x_1,\ldots,x_n)\neq b$ for
{\em any} string $b\in\{0,1\}^m$. We consider a variety of
``combinatorial'' pseudorandom generators inspired by the
Nisan-Wigderson generator on the one hand, and ...
more >>>
We continue the study of pseudorandom generators (PRG) $G:\{0,1\}^n \rightarrow \{0,1\}^m$ in NC0. While it is known that such generators are likely to exist for the case of small sub-linear stretch $m=n+n^{1-\epsilon}$, it remains unclear whether achieving larger stretch such as $m=2n$ or even $m=n+n^2$ is possible. The existence of ... more >>>
Impagliazzo and Wigderson have recently shown that
if there exists a decision problem solvable in time $2^{O(n)}$
and having circuit complexity $2^{\Omega(n)}$
(for all but finitely many $n$) then $\p=\bpp$. This result
is a culmination of a series of works showing
connections between the existence of hard predicates
and ...
more >>>
This paper proves that if strong pseudorandom number generators or
one-way functions exist, then the class of languages that have
polynomial-sized circuits is not small within exponential
time, in terms of the resource-bounded measure theory of Lutz.
More precisely, if for some \epsilon > 0 there exist nonuniformly
2^{n^{\epsilon}}-hard ...
more >>>
Following the paper of Alekhnovich, Ben-Sasson, Razborov, Wigderson \cite{ABRW04} we call a pseudorandom generator $\mathrm{PRG}\colon \{0, 1\}^n \to \{0, 1\}^m$ hard for for a propositional proof system $\mathrm{P}$ if $\mathrm{P}$ cannot efficiently prove the (properly encoded) statement $b \notin \mathrm{Im}(\mathrm{PRG})$ for any string $b \in \{0, 1\}^m$.
In \cite{ABRW04} authors ... more >>>
The area of derandomization attempts to provide efficient deterministic simulations of randomized algorithms in various algorithmic settings. Goldreich and Wigderson introduced a notion of "typically-correct" deterministic simulations, which are allowed to err on few inputs. In this paper we further the study of typically-correct derandomization in two ways.
First, we ... more >>>
A language $L$ is random-self-reducible if deciding membership in $L$ can be reduced (in polynomial time) to deciding membership in $L$ for uniformly random instances. It is known that several "number theoretic" languages (such as computing the permanent of a matrix) admit random self-reductions. Feigenbaum and Fortnow showed that NP-complete ... more >>>
We prove that pseudorandom sets in Grassmann graph have near-perfect expansion as hypothesized in [DKKMS-2]. This completes
the proof of the $2$-to-$2$ Games Conjecture (albeit with imperfect completeness) as proposed in [KMS, DKKMS-1], along with a
contribution from [BKT].
The Grassmann graph $Gr_{global}$ contains induced subgraphs $Gr_{local}$ that are themselves ... more >>>
Motivated by Reingold's recent deterministic log-space algorithm for Undirected S-T Connectivity (ECCC TR 04-94), we revisit the general RL vs. L question, obtaining the following results.
1. We exhibit a new complete problem for RL: S-T Connectivity restricted to directed graphs for which the random walk is promised to have ... more >>>
In combinatorics, the probabilistic method is a very powerful tool to prove the existence of combinatorial objects with interesting and useful properties. Explicit constructions of objects with such properties are often very difficult, or unknown. In computer science,
probabilistic algorithms are sometimes simpler and more efficient
than the best known ...
more >>>
We present an explicit pseudorandom generator for oblivious, read-once, width-$3$ branching programs, which can read their input bits in any order. The generator has seed length $\tilde{O}( \log^3 n ).$ The previously best known seed length for this model is $n^{1/2+o(1)}$ due to Impagliazzo, Meka, and Zuckerman (FOCS '12). Our ... more >>>
We explore the possibility of basing one-way functions on the average-case hardness of the fundamental Minimum Circuit Size Problem (MCSP[$s$]), which asks whether a Boolean function on $n$ bits specified by its truth table has circuits of size $s(n)$.
1. (Pseudorandomness from Zero-Error Average-Case Hardness) We show that for ... more >>>
We study computational procedures that use both randomness and nondeterminism. Examples are Arthur-Merlin games and approximate counting and sampling of NP-witnesses. The goal of this paper is to derandomize such procedures under the weakest possible assumptions.
Our main technical contribution allows one to ``boost'' a given hardness assumption. One special ... more >>>
We give deterministic black-box polynomial identity testing algorithms for multilinear read-once oblivious algebraic branching programs (ROABPs), in n^(lg^2 n) time. Further, our algorithm is oblivious to the order of the variables. This is the first sub-exponential time algorithm for this model. Furthermore, our result has no known analogue in the ... more >>>
We exhibit an explicit pseudorandom generator that stretches an $O \left( \left( w^4 \log w + \log (1/\varepsilon) \right) \cdot \log n \right)$-bit random seed to $n$ pseudorandom bits that cannot be distinguished from truly random bits by a permutation branching program of width $w$ with probability more than $\varepsilon$. ... more >>>
We give an explicit construction of a pseudorandom generator for read-once formulas whose inputs can be read in arbitrary order. For formulas in $n$ inputs and arbitrary gates of fan-in at most $d = O(n/\log n)$, the pseudorandom generator uses $(1 - \Omega(1))n$ bits of randomness and produces an output ... more >>>
We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is $O(\log^2 n)$, where $n$ is the length of the branching program. The previous best seed length known for this model was $n^{1/2+o(1)}$, ... more >>>
Bogdanov and Viola (FOCS 2007) constructed a pseudorandom
generator that fools degree $k$ polynomials over $\F_2$ for an arbitrary
constant $k$. We show that such generators can also be used to fool branching programs of width 2 and polynomial length that read $k$ bits of inputs at a
time. This ...
more >>>
One powerful theme in complexity theory and pseudorandomness in the past few decades has been the use of lower bounds to give pseudorandom generators (PRGs). However, the general results using this hardness vs. randomness paradigm suffer a quantitative loss in parameters, and hence do not give nontrivial implications for models ... more >>>
We study the pseudorandomness of random walks on expander graphs against tests computed by symmetric functions and permutation branching programs. These questions are motivated by applications of expander walks in the coding theory and derandomization literatures. We show that expander walks fool symmetric functions up to a $O(\lambda)$ error in ... more >>>
Impagliazzo and Wigderson showed that if $\text{E}=\text{DTIME}(2^{O(n)})$ requires size $2^{\Omega(n)}$ circuits, then
every time $T$ constant-error randomized algorithm can be simulated deterministically in time $\poly(T)$. However, such polynomial slowdown is a deal breaker when $T=2^{\alpha \cdot n}$, for a constant $\alpha>0$, as is the case for some randomized algorithms for ...
more >>>
An almost complete set A for a complexity class C is a language of C which is not complete, but that has the property that ``many'' languages of C reduce to A, where the term ``many'' is used in reference to Lutz's resource bounded measure (rbm). The question of the ... more >>>
Assume we are given sample access to an unknown distribution $D$ over a large domain $[N]$. An emerging line of work has demonstrated that many basic quantities relating to the distribution, such as its distance from uniform and its Shannon entropy, despite being hard to approximate through the samples only, ... more >>>
In this paper, we introduce the notion of a Public-Key Encryption (PKE) Scheme that is also a Locally-Decodable Error-Correcting Code.
In particular, our construction simultaneously satisfies all of the following properties:
\begin{itemize}
\item
Our Public-Key Encryption is semantically secure under a certain number-theoretic hardness assumption
...
more >>>
This work considers locally decodable codes in the computationally bounded channel model. The computationally bounded channel model, introduced by Lipton in 1994, views the channel as an adversary which is restricted to polynomial-time computation. Assuming the existence of IND-CPA secure public-key encryption, we present a construction of public-key locally decodable ... more >>>
We precisely characterize the role of private randomness in the ability of Alice to send a message to Bob while minimizing the amount of information revealed to him. We show that if using private randomness a message can be transmitted while revealing $I$ bits of information, the transmission can be ... more >>>
Suppose that a problem $\Pi$ has a statistical zero-knowledge (SZK) proof with communication complexity $m$. The question of batch verification for SZK asks whether one can prove that $k$ instances $x_1,\ldots,x_k$ all belong to $\Pi$ with a statistical zero-knowledge proof whose communication complexity is better than $k \cdot m$ (which ... more >>>
Public-key crypto
Contact: dima@maths.univ-rennes1.fr
Author: Dima Grigoriev
Title: Public-key cryptography and invariant theory
Abstract: Public-key cryptosystems are suggested based on invariants of group
representations
We present a new proposal for a trapdoor one-way function,
from which we derive public-key encryption and digital
signatures. The security of the new construction is based
on the conjectured computational difficulty of lattice-reduction
problems, providing a possible alternative to existing
more >>>
We construct public-key cryptosystems that are secure assuming the
\emph{worst-case} hardness of approximating the length of a shortest
nonzero vector in an $n$-dimensional lattice to within a small
$\poly(n)$ factor. Prior cryptosystems with worst-case connections
were based either on the shortest vector problem for a \emph{special
class} of lattices ...
more >>>
The continuous learning with errors (CLWE) problem was recently introduced by Bruna
et al. (STOC 2021). They showed that its hardness implies infeasibility of learning Gaussian
mixture models, while its tractability implies efficient Discrete Gaussian Sampling and thus
asymptotic improvements in worst-case lattice algorithms. No reduction between CLWE and
LWE ...
more >>>
The low-degree method postulates that no efficient algorithm outperforms low-degree polynomials in certain hypothesis-testing tasks. It has been used to understand computational indistinguishability in high-dimensional statistics.
We explore the use of the low-degree method in the context of cryptography. To this end, we apply it in the design and analysis ... more >>>
We introduce a new public quantum interactive proof system, namely qAM, by augmenting the verifier with a fixed-size quantum register in Arthur-Merlin game. We focus on space-bounded verifiers, and compare our new public system with private-coin interactive proof (IP) system in the same space bounds. We show that qAM systems ... more >>>
We prove the existence of Reed-Solomon codes of any desired rate $R \in (0,1)$ that are combinatorially list-decodable up to a radius approaching $1-R$, which is the information-theoretic limit. This is established by starting with the full-length $[q,k]_q$ Reed-Solomon code over a field $\mathbb{F}_q$ that is polynomially larger than the ... more >>>
We study the computational complexity of deciding the existence of a
Pure Nash Equilibrium in multi-player strategic games.
We address two fundamental questions: how can we represent a game?, and
how can we represent a game with polynomial pay-off functions?
Our results show that the computational complexity of
deciding ...
more >>>
We introduce the idea of pushdown automata with the ability to flip
its stack. By bounding the number of times the stack can be flipped
we obtain a hierarchy of language classes from the context free
languages to the recursively enumerable languages. We show that each
class in ...
more >>>