We show an O(sqrt(n))-space and polynomial-time algorithm for solving the planar directed graph reachability problem. Imai et al. showed in CCC 2013 that the problem is solvable in O(n^{1/2+eps})-space and polynomial-time by using separators for planar graphs, and it has been open whether the space bound can be improved to ... more >>>
We describe obfuscation schemes for matrix-product branching programs that are purely algebraic and employ matrix algebra and tensor algebra over a finite field. In contrast to the obfuscation schemes of Garg et al (SICOM 2016) which were based on multilinear maps, these schemes do not use noisy encodings. We prove ... more >>>
In this work we study oblivious complexity classes. Among our results:
1) For each $k \in \mathbb{N}$, we construct an explicit language $L_k \in O_2P$ that cannot be computed by circuits of size $n^k$.
2) We prove a hierarchy theorem for $O_2TIME$. In particular, for any function $t:\mathbb{N} \rightarrow \mathbb{N}$ ...
more >>>
Abstract. We show that oblivious on-line simulation with only
polylogarithmic increase in the time and space requirements is possible
on a probabilistic (coin flipping) RAM without using any cryptographic
assumptions. The simulation will fail with a negligible probability.
If $n$ memory locations are used, then the probability of failure is ...
more >>>
The Octahedral Tucker problem considers an n-dimensional hypergrid of side length two, centered at the origin, triangulated by connecting the origin to all outside vertices (applied recursively on each of the lower dimensional hypergrids passing through their origins at the corresponding reduced dimensions). Each vertex is assigned a color in ... more >>>
The closure of complexity classes is a elicate question and the answer varies depending on the type of reduction considered. The closure of most classes under many-to-one (Karp) reductions is clear, but the question becomes complicated when oracle (Cook) reductions are allowed, and even more so when the oracle reductions ... more >>>
An $r$-simple $k$-path is a {path} in the graph of length $k$ that
passes through each vertex at most $r$ times. The \simpath{r}{k}
problem, given a graph $G$ as input, asks whether there exists an
$r$-simple $k$-path in $G$. We first show that this problem is
NP-Complete. We then show ...
more >>>
Given a subset $A\subseteq \{0,1\}^n$, let $\mu(A)$ be the maximal ratio between $\ell_4$ and $\ell_2$ norms of a function whose Fourier support is a subset of $A$. We make some simple observations about the connections between $\mu(A)$ and the additive properties of $A$ on one hand, and between $\mu(A)$ and ... more >>>
We show that strong-enough lower bounds on monotone arithmetic circuits or the non-negative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial $f\in {\mathbb {R}}[x_1,\dots, x_n]$ of degree $d$ has an arithmetic circuit of size $s$ then $(x_1+\dots+x_n+1)^d+\epsilon ... more >>>
In the decision tree computation model for Boolean functions, the depth corresponds to query complexity, and size corresponds to storage space. The depth measure is the most well-studied one, and is known to be polynomially related to several non-computational complexity measures of functions such as certificate complexity. The size measure ... more >>>
The notion of an optimal acceptor for TAUT (the optimality
property is stated only for input strings from TAUT) comes from the line
of research aimed at resolving the question of whether optimal
propositional proof systems exist. In this paper we introduce two new
types of optimal acceptors, a D-N-optimal ...
more >>>
In this paper we suggest a modification of classical Lupanov's method [Lupanov1958]
that allows building circuits over the basis $\{\&,\vee,\neg\}$ for Boolean functions of $n$ variables with size at most
$$
\frac{2^n}{n}\left(1+\frac{3\log n + O(1)}{n}\right),
$$
and with more uniform distribution of outgoing arcs by circuit gates.
For almost all ... more >>>
We introduce a new lower bound method for bounded-error quantum communication complexity,
the \emph{singular value method (svm)}, based on sums of squared singular values of the
communication matrix, and we compare it with existing methods.
The first finding is a constant factor improvement of lower bounds based on the
spectral ...
more >>>
We highlight the special case of Valiant's rigidity
problem in which the low-rank matrices are truth-tables
of sparse polynomials. We show that progress on this
special case entails that Inner Product is not computable
by small $\acz$ circuits with one layer of parity gates
close to the inputs. We then ...
more >>>
We formulate a formal syntax of approximate formulas for the logic with counting
quantifiers, $\mathcal{SOLP}$, studied by us in \cite{aaco06}, where we showed the
following facts:
$(i)$ In the presence of a built--in (linear) order, $\mathcal{SOLP}$ can
describe {\bf NP}--complete problems and fragments of it capture classes like
{\bf P} ...
more >>>
In an unpublished Russian manuscript Razborov proved that a matrix family with high
rigidity over a finite field would yield a language outside the polynomial hierarchy
in communication complexity.
We present an alternative proof that strengthens the original result in several ways.
In particular, we replace rigidity by the strictly ...
more >>>
In 1979 Valiant showed that the complexity class VP_e of families with polynomially bounded formula size is contained in the class VP_s of families that have algebraic branching programs (ABPs) of polynomially bounded size. Motivated by the problem of separating these classes we study the topological closure VP_e-bar, i.e. the ... more >>>
We study the algebraic complexity of annihilators of polynomials maps. In particular, when a polynomial map is `encoded by' a small algebraic circuit, we show that the coefficients of an annihilator of the map can be computed in PSPACE. Even when the underlying field is that of reals or complex ... more >>>
We survey some recent results on the complexity of computing
approximate solutions for instances of the Minimum Bisection problem
and formulate some intriguing and still open questions about the
approximability status of that problem. Some connections to other
optimization problems are also indicated.
We consider the $P$-CSP problem for $3$-ary predicates $P$ on satisfiable instances. We show that under certain conditions on $P$ and a $(1,s)$ integrality gap instance of the $P$-CSP problem, it can be translated into a dictatorship vs. quasirandomness test with perfect completeness and soundness $s+\varepsilon$, for every constant $\varepsilon>0$. ... more >>>
Let $\Sigma$ be an alphabet and $\mu$ be a distribution on $\Sigma^k$ for some $k \geq 2$. Let $\alpha > 0$ be the minimum probability of a tuple in the support of $\mu$ (denoted by $supp(\mu)$). Here, the support of $\mu$ is the set of all tuples in $\Sigma^k$ that ... more >>>
In this paper we study functions on the Boolean hypercube that have the property that after applying certain random restrictions, the restricted function is correlated to a linear function with non-negligible probability. If the given function is correlated with a linear function then this property clearly holds. Furthermore, the property ... more >>>
We prove a stability result for general $3$-wise correlations over distributions satisfying mild connectivity properties. More concretely, we show that if $\Sigma,\Gamma$ and $\Phi$ are alphabets of constant size, and $\mu$ is a pairwise connected distribution over $\Sigma\times\Gamma\times\Phi$ with no $(\mathbb{Z},+)$ embeddings in which the probability of each atom is ... more >>>
We propose a framework of algorithm vs. hardness for all Max-CSPs and demonstrate it for a large class of predicates. This framework extends the work of Raghavendra [STOC, 2008], who showed a similar result for almost satisfiable Max-CSPs.
Our framework is based on a new hybrid approximation algorithm, which uses ... more >>>
We prove local and global inverse theorems for general $3$-wise correlations over pairwise-connected distributions. Let $\mu$ be a distribution over $\Sigma \times \Gamma \times \Phi$ such that the supports of $\mu_{xy}$, $\mu_{xz}$, and $\mu_{yz}$ are all connected, and let $f: \Sigma^n \to \mathbb{C}$, $g: \Gamma^n \to \mathbb{C}$, $h: \Phi^n \to ... more >>>
Let $\Sigma_1,\ldots,\Sigma_k$ be finite alphabets, and let $\mu$ be a distribution over $\Sigma_1 \times \dots \times \Sigma_k$ in which the probability of each atom is at least $\alpha$. We prove that if $\mu$ does not admit Abelian embeddings, and $f_i: \Sigma_i \to \mathbb{C}$ are $1$-bounded functions (for $i=1,\ldots,k$) such that ... more >>>
We consider the problem of fair cost allocation for traveling
salesman games for which the triangle inequality holds. We
give examples showing that the core of such games may be
empty, even for the case of Euclidean distances. On the
positive side, we develop an LP-based ...
more >>>
We prove that any constraint satisfaction problem
where each variable appears a bounded number of
times admits a nontrivial polynomial time approximation
algorithm.
A cycle cover of a graph is a set of cycles such that every vertex is
part of exactly one cycle. An L-cycle cover is a cycle cover in which
the length of every cycle is in the set L. The weight of a cycle cover
of an edge-weighted graph ...
more >>>
Approximating the eigenvalues of a Hermitian operator can be solved
by a quantum logspace algorithm. We introduce the problem of
approximating the eigenvalues of a given matrix in the context of
classical space-bounded computation. We show that:
- Approximating the second eigenvalue of stochastic operators (in a
certain range of ...
more >>>
We investigate the complexity of the following computational problem:
Polynomial Entropy Approximation (PEA):
Given a low-degree polynomial mapping
$p : F^n\rightarrow F^m$, where $F$ is a finite field, approximate the output entropy
$H(p(U_n))$, where $U_n$ is the uniform distribution on $F^n$ and $H$ may be any of several entropy measures.
We consider the problem of estimating the size, $VC(G)$, of a
minimum vertex cover of a graph $G$, in sublinear time,
by querying the incidence relation of the graph. We say that
an algorithm is an $(\alpha,\eps)$-approximation algorithm
if it outputs with high probability an estimate $\widehat{VC}$
such that ...
more >>>
In this work we consider the problem of approximating the number of relevant variables in a function given query access to the function. Since obtaining a multiplicative factor approximation is hard in general, we consider several relaxations of the problem. In particular, we consider relaxations in which we have a ... more >>>
TSP(1,2), the Traveling Salesman Problem with distances 1 and 2, is
the problem of finding a tour of minimum length in a complete
weighted graph where each edge has length 1 or 2. Let $d_o$ satisfy
$0<d_o<1/2$. We show that TSP(1,2) has no PTAS on the set ...
more >>>
The bandwidth problem is the problem of enumerating
the vertices of a given graph $G$ such that the maximum
difference between the numbers of
adjacent vertices is minimal. The problem has a long
history and a number of applications
and is ...
more >>>
The bandwidth problem is the problem of enumerating
the vertices of a given graph $G$ such that the maximum difference
between the numbers of adjacent vertices is minimal. The problem
has a long history and a number of applications.
There was not ...
more >>>
We develop a new method for proving explicit approximation lower bounds for TSP problems with bounded metrics improving on the best up to now known bounds. They almost match the best known bounds for unbounded metric TSP problems. In particular, we prove the best known lower bound for TSP with ... more >>>
We consider the ``minor'' and ``homeomorphic'' analogues of the maximum clique problem, i.e., the problems of determining the largest $h$ such that the input graph has a minor isomorphic to $K_h$ or a subgraph homeomorphic to $K_h,$ respectively.We show the former to be approximable within $O(\sqrt {n} \log^{1.5} n)$ by ... more >>>
We consider the problems of attribute-efficient PAC learning of two well-studied concept classes: parity functions and DNF expressions over $\{0,1\}^n$. We show that attribute-efficient learning of parities with respect to the uniform distribution is equivalent to decoding high-rate random linear codes from low number of errors, a long-standing open problem ... more >>>
Many low-degree tests examine the input function via its restrictions to random hyperplanes of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane (Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests.
In this paper we study a test introduced by Ben-Sasson and Sudan in 2006 that ... more >>>
Barnette's conjecture is the statement that every 3-connected cubic
planar bipartite graph is Hamiltonian. Goodey showed that the conjecture
holds when all faces of the graph have either 4 or 6 sides. We
generalize Goodey's result by showing that when the faces of such a
graph are 3-colored, with adjacent ...
more >>>
A black-box (BB) reduction is a central proof technique in theoretical computer science. However, the limitations on BB reductions have been revealed for several decades, and the series of previous work gives strong evidence that we should avoid a nonadaptive BB reduction to base cryptography on NP-hardness (e.g., Akavia et ... more >>>
We prove that if the hardness of inverting a size-verifiable one-way function can
be based on NP-hardness via a general (adaptive) reduction, then coAM is contained in NP. This
claim was made by Akavia, Goldreich, Goldwasser, and Moshkovitz (STOC 2006), but
was later retracted (STOC 2010).
Learning is a central task in computer science, and there are various
formalisms for capturing the notion. One important model studied in
computational learning theory is the PAC model of Valiant (CACM 1984).
On the other hand, in cryptography the notion of ``learning nothing''
is often modelled by the simulation ...
more >>>
The {\em hybrid argument}
allows one to relate
the {\em distinguishability} of a distribution (from
uniform) to the {\em
predictability} of individual bits given a prefix. The
argument incurs a loss of a factor $k$ equal to the
bit-length of the
distributions: $\epsilon$-distinguishability implies only
$\epsilon/k$-predictability. ...
more >>>
For a set $\Pi$ in a metric space and $\delta>0$, denote by $\mathcal{F}_\delta(\Pi)$ the set of elements that are $\delta$-far from $\Pi$. In property testing, a $\delta$-tester for $\Pi$ is required to accept inputs from $\Pi$ and reject inputs from $\mathcal{F}_\delta(\Pi)$. A natural dual problem is the problem of $\delta$-testing ... more >>>
We give a classification of block-wise symmetric signatures
in the theory of matchgate computations. The main proof technique
is matchgate identities, a.k.a. useful Grassmann-Pl\"{u}cker
identities.
A matrix is blocky if it is a blowup of a permutation matrix. The blocky rank of a matrix M is the minimum number of blocky matrices that linearly span M. Hambardzumyan, Hatami and Hatami defined blocky rank and showed that it is connected to communication complexity and operator theory. ... more >>>
We propose an information-theoretic approach to proving
lower bounds on the size of branching programs (b.p.). The argument
is based on Kraft-McMillan type inequalities for the average amount of
uncertainty about (or entropy of) a given input during various
stages of the computation. ...
more >>>
We study the Chv\'atal rank of polytopes as a complexity measure of
unsatisfiable sets of clauses. Our first result establishes a
connection between the Chv\'atal rank and the minimum refutation
length in the cutting planes proof system. The result implies that
length lower bounds for cutting planes, or even for ...
more >>>
Given a set of $n$ points in $\mathbb R^d$, the (monochromatic) Closest Pair problem asks to find a pair of distinct points in the set that are closest in the $\ell_p$-metric. Closest Pair is a fundamental problem in Computational Geometry and understanding its fine-grained complexity in the Euclidean metric when ... more >>>
We show necessary and sufficient conditions that
certain algebraic functions like the rank or the signature
of an integer matrix can be computed in GapL.
For any fixed $t$, we present two fine-grained reductions of the problem of approximately counting the number of $t$-cliques in a graph to the problem of detecting a $t$-clique in a graph.
One of our reductions is slightly better than the prior reduction of Dell, Lapinskas, and Meeks (SODA20) and ...
more >>>
This work introduces a model of distributed learning in the spirit of Yao's communication complexity model. We consider a two-party setting, where each of the players gets a list of labelled examples and they communicate in order to jointly perform some learning task. To naturally fit into the framework of ... more >>>
We study the computational complexity of counting the fixed point configurations in certain discrete dynamical systems. We prove that both exact and approximate counting in Sequential and Synchronous Dynamical Systems (SDSs and SyDS, respectrively) is computationally intractable, even when each node is required to update according to a symmetric Boolean ... more >>>
We consider the computational complexity of the market equilibrium
problem by exploring the structural properties of the Leontief
exchange economy. We prove that, for economies guaranteed to have
a market equilibrium, finding one with maximum social welfare or
maximum individual welfare is NP-hard. In addition, we prove that
counting the ...
more >>>
We consider Generalized Equality, the Hidden Subgroup,
and related problems in the context of quantum Ordered Binary
Decision Diagrams. For the decision versions of considered problems
we show polynomial upper bounds in terms of quantum OBDD width. We
apply a new modification of the fingerprinting technique and present
the algorithms ...
more >>>
A regular $(1,+k)$-branching program ($(1,+k)$-ReBP) is an
ordinary branching program with the following restrictions: (i)
along every consistent path at most $k$ variables are tested more
than once, (ii) for each node $v$ on all paths from the source to
$v$ the same set $X(v)\subseteq X$ of variables is ...
more >>>
We explore the computational power of formal models for computation
with pulses. Such models are motivated by realistic models for
biological neurons, and by related new types of VLSI (``pulse stream
VLSI'').
In preceding work it was shown that the computational power of formal
models for computation with pulses is ...
more >>>
In this paper we deal with 1-way multihead finite automata, in which the symbol under only one head (called read head) controls its move and other heads cannot distinguish the input symbols, they can only distinguish the end-marker from the other input symbols and they are called the blind head. ... more >>>
In this paper, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which polynomial computed at every node has a bound on the individual degree of $r$ (referred to as multi-$r$-ic circuits). The goal of this study is to make progress towards proving ... more >>>
We consider new complexity measures for the model of multilinear circuits with general multilinear gates introduced by Goldreich and Wigderson (ECCC, 2013).
These complexity measures are related to the size of canonical constant-depth Boolean circuits, which extend the definition of canonical depth-three Boolean circuits.
We obtain matching lower and upper ...
more >>>
We show how to construct length-preserving 1-1 one-way
functions based on popular intractability assumptions (e.g., RSA, DLP).
Such 1-1 functions should not
be confused with (infinite) families of (finite) one-way permutations.
What we want and obtain is a single (infinite) 1-1 one-way function.
The best-known representations of boolean functions f are those of disjunctions of terms (DNFs) and as conjuctions of clauses (CNFs). It is convenient to define the DNF size of f as the minimal number of terms in a DNF representing f and the CNF size as the minimal number of ... more >>>
Khrapchenko's classical lower bound $n^2$ on the formula size of the
parity function~$f$ can be interpreted as designing a suitable
measure of subrectangles of the combinatorial rectangle
$f^{-1}(0)\times f^{-1}(1)$. Trying to generalize this approach we
arrived at the concept of \emph{convex measures}. We prove the
more >>>
We study the fundamental challenge of exhibiting explicit functions that have small correlation with low-degree polynomials over $\mathbb{F}_{2}$. Our main contributions include:
1. In STOC 2020, CHHLZ introduced a new technique to prove correlation bounds. Using their technique they established new correlation bounds for low-degree polynomials. They conjectured that their ... more >>>
We suggest a new approach to obtain bounds on locally correctable and some locally testable binary linear codes, by arguing that their coset leader graphs have high discrete Ricci curvature.
The bounds we obtain for locally correctable codes are worse than the best known bounds obtained using quantum information theory, ... more >>>
Continuing the study of the relationship between $TC^0$,
$AC^0$ and arithmetic circuits, started by Agrawal et al.
(IEEE Conference on Computational Complexity'97),
we answer a few questions left open in this
paper. Our main result is that the classes Diff$AC^0$ and
Gap$AC^0$ ...
more >>>
For a constant integer $t$, we consider the problem of counting the number of $t$-cliques $\bmod 2$ in a given graph.
We show that this problem is not easier than determining whether a given graph contains a $t$-clique, and present a simple worst-case to average-case reduction for it. The ...
more >>>
We give a dichotomy theorem for the problem of counting homomorphisms to
directed acyclic graphs. $H$ is a fixed directed acyclic graph.
The problem is, given an input digraph $G$, how many homomorphisms are there
from $G$ to $H$. We give a graph-theoretic classification, showing that
for some digraphs $H$, ...
more >>>
Consider a problem involving updates and queries of a data structure.
Assume that there exists a family of algorithms which exhibit a
tradeoff between query and update time. We demonstrate a general
technique of constructing from such a family
a single algorithm with best amortized time. We indicate some ...
more >>>
Let $\tau(n)$ denote the minimum number of arithmetic operations sufficient to build the integer $n$ from the constant~$1$. We prove that if there are arithmetic circuits for computing the permanent of $n$ by $n$ matrices having size polynomial in $n$, then $\tau(n!)$ is polynomially bounded in $\log n$. Under the ... more >>>
We propose a new definition of the class of search problems that correspond to BPP.
Specifically, a problem in this class is specified by a polynomial-time approximable function $q:\{0,1\}^*\times\{0,1\}^*\to[0,1]$ that associates, with each possible solution $y$ to an instance $x$, a quality $q(x,y)$.
Intuitively, quality 1 corresponds to perfectly ...
more >>>
This note revisits the study of search problems that are solvable in probabilistic polynomial time. Previously, Goldreich (2011) introduced a class called ``$\mathcal{BPP}$-search'', and studied search-to-decision reductions for problems in this class.
In Goldreich's original formulation, the definition of what counts as ``successfully solving'' a $\mathcal{BPP}$-search problem is implicit, and ... more >>>
The composition of two Boolean functions $f:\left\{0,1\right\}^{m}\to\left\{0,1\right\}$, $g:\left\{0,1\right\}^{n}\to\left\{0,1\right\}$
is the function $f \diamond g$ that takes as inputs $m$ strings $x_{1},\ldots,x_{m}\in\left\{0,1\right\}^{n}$
and computes
\[
(f \diamond g)(x_{1},\ldots,x_{m})=f\left(g(x_{1}),\ldots,g(x_{m})\right).
\]
This operation has been used several times for amplifying different
hardness measures of $f$ and $g$. This comes at a cost: the ...
more >>>
{\em Does derandomization of probabilistic algorithms become easier when the number of ``bad'' random inputs is extremely small?}
In relation to the above question, we put forward the following {\em quantified derandomization challenge}:
For a class of circuits $\cal C$ (e.g., P/poly or $AC^0,AC^0[2]$) and a bounding function $B:\N\to\N$ (e.g., ...
more >>>
Let $f$ be a Boolean function. Let $N(f)=\dnf(f)+\dnf(\neg f)$ be the
sum of the minimum number of monomials in a disjunctive normal form
for $f$ and $\neg f$. Let $p(f)$ be the minimum size of a partition
of the Boolean cube into disjoint subcubes such that $f$ is constant on
more >>>
Query-to-communication lifting theorems, which connect the query complexity of a Boolean function to the communication complexity of an associated `lifted' function obtained by composing the function with many copies of another function known as a gadget, have been instrumental in resolving many open questions in computational complexity. Several important complexity ... more >>>
We study the classification problem {\sc Metric Labeling} and its special case {\sc 0-Extension} in the context of earthmover metrics. Researchers recently proposed using earthmover metrics to get a polynomial time-solvable relaxation of {\sc Metric Labeling}; until now, however, no one knew if the integrality ratio was constant or not, ... more >>>
In this paper we study the problem of efficiently factorizing polynomials in the free noncommutative ring F of polynomials in noncommuting variables x_1,x_2,…,x_n over the field F. We obtain the following result:
Given a noncommutative arithmetic formula of size s computing a noncommutative polynomial f in F as input, where ... more >>>
We show that any $q$-query locally decodable code (LDC) gives a copy of $\ell_1^k$ with small distortion in the Banach space of $q$-linear forms on $\ell_{p_1}^N\times\cdots\times\ell_{p_q}^N$, provided $1/p_1 + \cdots + 1/p_q \leq 1$ and where $k$, $N$, and the distortion are simple functions of the code parameters. We exhibit ... more >>>
The known emulation of interactive proof systems by public-coins interactive proof systems proceeds by selecting, at each round, a message such that each message is selected with probability that is at most polynomially larger than its probability in the original protocol.
Specifically, the possible messages are essentially clustered according to ...
more >>>
Cryan and Miltersen recently considered the question
of whether there can be a pseudorandom generator in
NC0, that is, a pseudorandom generator such that every
bit of the output depends on a constant number k of bits
of the seed. They show that for k=3 there is always a
distinguisher; ...
more >>>
Following Feige, we consider the problem of
estimating the average degree of a graph.
Using ``neighbor queries'' as well as ``degree queries'',
we show that the average degree can be approximated
arbitrarily well in sublinear time, unless the graph is extremely sparse
(e.g., unless the graph has a sublinear ...
more >>>
We investigate the computational complexity of estimating the trace of quantum state powers $\text{tr}(\rho^q)$ for an $n$-qubit mixed quantum state $\rho$, given its state-preparation circuit of size $\text{poly}(n)$. This quantity is closely related to and often interchangeable with the Tsallis entropy $\text{S}_q(\rho) = \frac{1-\text{tr}(\rho^q)}{q-1}$, where $q = 1$ corresponds to ... more >>>
Pin & Weil [PW95] characterized the automata of existentially
first-order definable languages. We will use this result for the following
characterization of the complexity class NP. Assume that the
Polynomial-Time Hierarchy does not collapse. Then a regular language
L characterizes NP as an unbalanced polynomial-time leaf language
if and ...
more >>>
In a seminal paper, Feldman and Micali (STOC '88) show an n-party Byzantine agreement protocol tolerating t < n/3 malicious parties that runs in expected constant rounds. Here, we show an expected constant-round protocol for authenticated Byzantine agreement assuming honest majority (i.e., $t < n/2$), and relying only on the ... more >>>
This paper concerns the possibility of developing a coherent
theory of security when feasibility is associated
with expected probabilistic polynomial-time (expected PPT).
The source of difficulty is that
the known definitions of expected PPT strategies
(i.e., expected PPT interactive machines)
do not support natural results of the ...
more >>>
The Exponential-Time Hypothesis ($ETH$) is a strengthening of the $\mathcal{P} \neq \mathcal{NP}$ conjecture, stating that $3\text{-}SAT$ on $n$ variables cannot be solved in time $2^{\epsilon\cdot n}$, for some $\epsilon>0$. In recent years, analogous hypotheses that are ``exponentially-strong'' forms of other classical complexity conjectures (such as $\mathcal{NP}\not\subseteq\mathcal{BPP}$ or $co\text{-}\mathcal{NP}\not\subseteq \mathcal{NP}$) have ... more >>>
If $k<n$, can one express the majority of $n$ bits as the majority of at most $k$ majorities, each of at most $k$ bits? We prove that such an expression is possible only if $k = \Omega(n^{4/5})$. This improves on a bound proved by Kulikov and Podolskii, who showed that ... more >>>
We deal with the problem of extracting as much randomness as possible
from a defective random source.
We devise a new tool, a ``merger'', which is a function that accepts
d strings, one of which is uniformly distributed,
and outputs a single string that is guaranteed ...
more >>>
Read-once Oblivious Algebraic Branching Programs (ROABPs) compute polynomials as products of univariate polynomials that have matrices as coefficients. In an attempt to understand the landscape of algebraic complexity classes surrounding ROABPs, we study classes of ROABPs based on the algebraic structure of these coefficient matrices. We study connections between polynomials ... more >>>
A recent result of Moshkovitz~\cite{Moshkovitz14} presented an ingenious method to provide a completely elementary proof of the Parallel Repetition Theorem for certain projection games via a construction called fortification. However, the construction used in \cite{Moshkovitz14} to fortify arbitrary label cover instances using an arbitrary extractor is insufficient to prove parallel ... more >>>
In this paper we study the fractional block sensitivityof Boolean functions. Recently, Tal (ITCS, 2013) and
Gilmer, Saks, and Srinivasan (CCC, 2013) independently introduced this complexity measure, denoted by $fbs(f)$, and showed
that it is equal (up to a constant factor) to the randomized certificate complexity, denoted by $RC(f)$, which ...
more >>>
Given a Boolean matrix and a threshold t, a subset of the
columns is frequent if there are at least t rows having a 1 entry in
each corresponding position. This concept is used in the algorithmic,
combinatorial approach to knowledge discovery and data mining. We
consider the complexity aspects ...
more >>>
A boolean circuit $f(x_1,\ldots,x_n)$ \emph{represents} a graph $G$
on $n$ vertices if for every input vector $a\in\{0,1\}^n$ with
precisely two $1$'s in, say, positions $i$ and $j$, $f(a)=1$
precisely when $i$ and $j$ are adjacent in $G$; on inputs with more
or less than two ...
more >>>
The hardness vs.~randomness paradigm aims to explicitly construct pseudorandom generators $G:\{0,1\}^r \to \{0,1\}^m$ that fool circuits of size $m$, assuming the existence of explicit hard functions. A ``high-end PRG'' with seed length $r=O(\log m)$ (implying BPP=P) was achieved in a seminal work of Impagliazzo and Wigderson (STOC 1997), assuming \textsc{the ... more >>>
In the $Gap-clique(k, \frac{k}{2})$ problem, the input is an $n$-vertex graph $G$, and the goal is to decide whether $G$ contains a clique of size $k$ or contains no clique of size $\frac{k}{2}$. It is an open question in the study of fixed parameterized tractability whether the $Gap-clique(k, \frac{k}{2})$ problem ... more >>>
For a boolean function $f:\{0,1\}^n\rightarrow \{0,1\}$, let $\hat{f}$ be the unique multilinear polynomial such that $f(x)=\hat{f}(x)$ holds for every $x\in \{0,1\}^n$. We show that, assuming $\hbox{VP}\not=\hbox{VNP}$, there exists a polynomial-time computable $f$ such that $\hat{f}$ requires super-polynomial arithmetic circuits. In fact, this $f$ can be taken as a monotone 2-CNF, ... more >>>
We say that two given polynomials $f, g \in R[x_1, \ldots, x_n]$, over a ring $R$, are equivalent under shifts if there exists a vector $(a_1, \ldots, a_n)\in R^n$ such that $f(x_1+a_1, \ldots, x_n+a_n) = g(x_1, \ldots, x_n)$. This is a special variant of the polynomial projection problem in Algebraic ... more >>>
We study the existence of time hierarchies for heuristic (average-case) algorithms. We prove that a time hierarchy exists for heuristics algorithms in such syntactic classes as NP and co-NP, and also in semantic classes AM and MA. Earlier, Fortnow and Santhanam (FOCS'04) proved the existence of a time hierarchy for ... more >>>
We study the following question: Is it easier to construct a hitting-set generator for polynomials $p:\mathbb{F}^n\rightarrow\mathbb{F}$ of degree $d$ if we are guaranteed that the polynomial vanishes on at most an $\epsilon>0$ fraction of its inputs? We will specifically be interested in tiny values of $\epsilon\ll d/|\mathbb{F}|$. This question was ... more >>>
We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing algorithms for depth-3 set-multilinear circuits (over arbitrary fields). This class of circuits has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka), but has no known such black-box algorithm. We recast this problem as ... more >>>
The field of combinatorial reconfiguration studies search problems with a focus on transforming one feasible solution into another.
Recently, Ohsaka [STACS'23] put forth the Reconfiguration Inapproximability Hypothesis (RIH), which roughly asserts that there is some $\varepsilon>0$ such that given as input a $k$-CSP instance (for some constant $k$) over ... more >>>
We present a candidate reduction from the $3$-Lin problem to the $2$-to-$2$ Games problem and present a combinatorial hypothesis about
Grassmann graphs which, if correct, is sufficient to show the soundness of the reduction in
a certain non-standard sense. A reduction that is sound in this non-standard sense
implies that ...
more >>>
In interactive coding, Alice and Bob wish to compute some function $f$ of their individual private inputs $x$ and $y$. They do this by engaging in an interactive protocol to jointly compute $f(x,y)$. The goal is to do this in an error-resilient way, such that even given some fraction of ... more >>>
Interactive proofs of proximity (IPPs) offer ultra-fast
approximate verification of assertions regarding their input,
where ultra-fast means that only a small portion of the input is read
and approximate verification is analogous to the notion of
approximate decision that underlies property testing.
Specifically, in an IPP, the prover can make ...
more >>>
We continue the investigation of interactive proofs with bounded
communication, as initiated by Goldreich and Hastad (IPL 1998).
Let $L$ be a language that has an interactive proof in which the prover
sends few (say $b$) bits to the verifier.
We prove that the complement $\bar L$ has ...
more >>>
We introduce {\em online interactive proofs} (OIP), which are a hierarchy of communication complexity models that involve both randomness and nondeterminism (thus, they belong to the Arthur--Merlin family), but are {\em online} in the sense that the basic communication flows from Alice to Bob alone. The complexity classes defined by ... more >>>
The isoperimetric profile of a graph is a function that measures, for an integer $k$, the size of the smallest edge boundary over all sets of vertices of size $k$. We observe a connection between isoperimetric profiles and computational complexity. We illustrate this connection by an example from communication complexity, ... more >>>
We study computational problems that arise in the context of iterated dominance in anonymous games, and show that deciding whether a game can be solved by means of iterated weak dominance is NP-hard for anonymous games with three actions. For the case of two actions, this problem can be reformulated ... more >>>
It is known that a k-term DNF can have at most 2^k ? 1 prime implicants and this bound is sharp. We determine all k-term DNF having the maximal number of prime implicants. It is shown that a DNF is maximal if and only if it corresponds to a non-repeating ... more >>>
We initiate a study of learning and testing dynamic environments,
focusing on environment that evolve according to a fixed local rule.
The (proper) learning task consists of obtaining the initial configuration
of the environment, whereas for non-proper learning it suffices to predict
its future values. The testing task consists of ...
more >>>
This paper studies the learnability of branching programs and small depth
circuits with modular and threshold gates in both the exact and PAC learning
models with and without membership queries. Some of the results extend earlier
works in [GG95,ERR95,BTW95]. The main results are as follows. For
branching programs we ...
more >>>
In this paper, we study the problem of using statistical
query (SQ) to learn highly correlated boolean functions, namely, a
class of functions where any
pair agree on significantly more than a fraction 1/2 of the inputs.
We give a limit on how well ...
more >>>
We investigate a variant of the Probably Almost Correct learning model
where the learner has to learn from ambiguous information. The
ambiguity is introduced by assuming that the learner does not receive
single instances with their correct labels as training data, but that
the learner receives ...
more >>>
We show that the class of monotone $2^{O(\sqrt{\log n})}$-term DNF
formulae can be PAC learned in polynomial time under the uniform
distribution. This is an exponential improvement over previous
algorithms in this model, which could learn monotone
$o(\log^2 n)$-term DNF, and is the first efficient algorithm
for ...
more >>>
\begin{abstract}
A set $F$ of $n$-ary Boolean functions is called a pseudorandom function generator
(PRFG) if communicating
with a randomly chosen secret function from $F$ cannot be
efficiently distinguished from communicating with a truly random function.
We ask for the minimal hardware complexity of a PRFG. This question ...
more >>>
We extend the line of research initiated by Fortnow and Klivans \cite{FortnowKlivans09} that studies the relationship between efficient learning algorithms and circuit lower bounds. In \cite{FortnowKlivans09}, it was shown that if a Boolean circuit class $\mathcal{C}$ has an efficient \emph{deterministic} exact learning algorithm, (i.e. an algorithm that uses membership and ... more >>>
We revisit the main result of Carmosino et al \cite{CILM18} which shows that an $\Omega(n^{\omega/2+\epsilon})$ size noncommutative arithmetic circuit size lower bound (where $\omega$ is the matrix multiplication exponent) for a constant-degree $n$-variate polynomial family $(g_n)_n$, where each $g_n$ is a noncommutative polynomial, can be ``lifted'' to an exponential size ... more >>>
Ehrenfeucht-Fraisse games and their generalizations have been quite successful in finite model theory and yield various inexpressibility results. However, for key problems such as P $\ne$ NP or NP $\ne$ coNP no progress has been achieved using the games. We show that for these problems it is already hard to ... more >>>
A fundamental fact about bounded-degree graph expanders is that three notions of expansion---vertex expansion, edge expansion, and spectral expansion---are all equivalent. In this paper, we study to what extent such a statement is true for linear-algebraic notions of expansion.
There are two well-studied notions of linear-algebraic expansion, namely dimension expansion ... more >>>
We study the error resilience of transitive linear codes over $F_2$. We give tight bounds on the weight distribution of every such code $C$, and we show how these bounds can be used to infer bounds on the error rates that $C$ can tolerate on the binary symmetric channel. Using ... more >>>
We continue the study of list recovery properties of high-rate tensor codes, initiated by Hemenway, Ron-Zewi, and Wootters (FOCS'17). In that work it was shown that the tensor product of an efficient (poly-time) high-rate globally list recoverable code is {\em approximately} locally list recoverable, as well as globally list recoverable ... more >>>
Non-signaling strategies are a generalization of quantum strategies that have been studied in physics for decades, and have recently found applications in theoretical computer science. These applications motivate the study of local-to-global phenomena for non-signaling functions.
We present general results about the local testability of linear codes in the non-signaling ... more >>>
We prove an extremal combinatorial result regarding
the fraction of satisfiable clauses in boolean CNF
formulae enjoying a locally checkable property, thus
solving a problem that has been open for several years.
We then generalize the problem to arbitrary constraint
satisfaction ...
more >>>
The motivation for this paper is to study the complexity of constant-width arithmetic circuits. Our main results are the following.
1. For every k > 1, we provide an explicit polynomial that can be computed by a linear-sized monotone circuit of width 2k but has no subexponential-sized monotone circuit ...
more >>>
We show that lower bounds on the border rank of matrix multiplication can be used to non-trivially derandomize polynomial identity testing for small algebraic circuits. Letting $\underline{R}(n)$ denote the border rank of $n \times n \times n$ matrix multiplication, we construct a hitting set generator with seed length $O(\sqrt{n} \cdot ... more >>>
We describe a new approach for the problem of finding {\rm rigid} matrices, as posed by Valiant [Val77], by connecting it to the, seemingly unrelated, problem of proving lower bounds for locally self-correctable codes. This approach, if successful, could lead to a non-natural property (in the sense of Razborov and ... more >>>
The rigidity function of a matrix is defined as the minimum number of its entries that need to be changed in order to reduce the rank of the matrix to below a given parameter. Proving a strong enough lower bound on the rigidity of a matrix implies a nontrivial lower ... more >>>
In recent years the explosion in the volumes of data being stored online has resulted in distributed storage systems transitioning to erasure coding based schemes. Local Reconstruction Codes (LRCs) have emerged as the codes of choice for these applications. An $(n,r,h,a,q)$-LRC is a $q$-ary code, where encoding is as a ... more >>>
In the context of proving lower bounds on proof space in $k$-DNF
resolution, [Ben-Sasson and Nordström 2009] introduced the concept of
minimally unsatisfiable sets of $k$-DNF formulas and proved that a
minimally unsatisfiable $k$-DNF set with $m$ formulas can have at most
$O((mk)^{k+1})$ variables. They also gave an example of ...
more >>>
Finite languages lie at the heart of literally every regular expression. Therefore, we investigate the approximation complexity of minimizing regular expressions without Kleene star, or, equivalently, regular expressions describing finite languages. On the side of approximation hardness, given such an expression of size~$s$, we prove that it is impossible to ... more >>>
We show a directed and robust analogue of a boolean isoperimetric type theorem of Talagrand. As an application, we
give a monotonicity testing algorithm that makes $\tilde{O}(\sqrt{n}/\epsilon^2)$ non-adaptive queries to a function
$f:\{0,1\}^n \mapsto \{0,1\}$, always accepts a monotone function and rejects a function that is $\epsilon$-far from
being monotone ...
more >>>
We show that recognizing the $K_3$-freeness and $K_4$-freeness of
graphs is hard, respectively, for two-player nondeterministic
communication protocols with exponentially many partitions and for
nondeterministic (syntactic) read-$s$ times branching programs.
The key ingradient is a generalization of a coloring lemma, due to
Papadimitriou and Sipser, which says that for every ...
more >>>
Reed-Muller codes are among the most important classes of locally correctable codes. Currently local decoding of Reed-Muller codes is based on decoding on lines or quadratic curves to recover one single coordinate. To recover multiple coordinates simultaneously, the naive way is to repeat the local decoding for recovery of a ... more >>>
In this paper, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over $GF(2)= \{0,1\}$. We show the following results for multilinear forms and tensors.
1. Correlation bounds : We show that a random $d$-linear ... more >>>
We study k-partition communication protocols, an extension
of the standard two-party best-partition model to k input partitions.
The main results are as follows.
1. A strong explicit hierarchy on the degree of
non-obliviousness is established by proving that,
using k+1 partitions instead of k may decrease
the communication complexity from ...
more >>>
The communication complexity of $F$ with unbounded error is the limit of the $\epsilon$-error randomized complexity of $F$ as $\epsilon\to1/2.$ Communication complexity with weakly bounded error is defined similarly but with an additive penalty term that depends on $1/2-\epsilon$. Explicit functions are known whose two-party communication complexity with unbounded error ... more >>>
We consider three types of multiple input problems in the context of property testing.
Specifically, for a property $\Pi\subseteq\{0,1\}^n$, a proximity parameter $\epsilon$, and an integer $m$, we consider the following problems:
\begin{enumerate}
\item Direct $m$-Sum Problem for $\Pi$ and $\epsilon$:
Given a sequence of $m$ inputs, output a sequence ...
more >>>
Linear threshold elements are the basic building blocks of artificial neural
networks. A linear threshold element computes a function that is a sign of a
weighted sum of the input variables. The weights are arbitrary integers;
actually, they can be very big integers---exponential in the number of the
input variables. ...
more >>>
This paper studies the computational complexity of the following type of
quadratic programs: given an arbitrary matrix whose diagonal elements are zero, find $x \in \{-1,+1\}^n$ that maximizes $x^TA x$. This problem recently attracted attention due to its application in various clustering settings (Charikar and Wirth, 2004) as well as ...
more >>>
We consider the proof search ("automatizability") problem for integrated learning and reasoning, a problem modeling certain kinds of data mining and common sense reasoning (Juba, 2013a). In such a problem, the approximate validity (i.e., under Valiant’s PAC-Semantics (Valiant, 2000)) of an input query formula over a background probability distribution is ... more >>>
The paper investigates expansion properties of the Grassmann graph,
motivated by recent results of [KMS, DKKMS] concerning hardness
of the Vertex-Cover and of the $2$-to-$1$ Games problems. Proving the
hypotheses put forward by these papers seems to first require a better
understanding of these expansion properties.
We consider the edge ... more >>>
We investigate the computational power of an arbitrary distinguisher for (not necessarily computable) hitting set generators as well as the set of Kolmogorov-random strings. This work contributes to (at least) two lines of research. One line of research is the study of the limits of black-box reductions to some distributional ... more >>>
Randomized branching programs are a probabilistic model of computation
defined in analogy to the well-known probabilistic Turing machines.
In this paper, we present complexity theoretic results for randomized
read-once branching programs.
Our main result shows that nondeterminism can be more powerful than
randomness for read-once branching programs. We present a ...
more >>>
In 2004 Atserias, Kolaitis and Vardi proposed OBDD-based propositional proof systems that prove unsatisfiability of a CNF formula by deduction of identically false OBDD from OBDDs representing clauses of the initial formula. All OBDDs in such proofs have the same order of variables. We initiate the study of OBDD based ... more >>>
A number of recent results have constructed randomness extractors
and pseudorandom generators (PRGs) directly from certain
error-correcting codes. The underlying construction in these
results amounts to picking a random index into the codeword and
outputting $m$ consecutive symbols (the codeword is obtained from
the weak random source in the case ...
more >>>
The method of obtaining lower bounds on the complexity
of Boolean functions for nondeterministic branching programs
is proposed.
A nonlinear lower bound on the complexity of characteristic
functions of Reed--Muller codes for nondeterministic
branching programs is obtained.
We study the query complexity of one-sided $\epsilon$-testing the class of Boolean functions $f:F^n\to \{0,1\}$ that describe affine subspaces and Boolean functions that describe axis-parallel affine subspaces, where $F$ is any finite field. We give a polynomial-time $\epsilon$-testers that ask $\tilde O(1/\epsilon)$ queries. This improves the query complexity $\tilde O(|F|/\epsilon)$ ... more >>>
We prove the equivalence of two fundamental problems in the theory of computation:
- Existence of one-way functions: the existence of one-way functions (which in turn are equivalent to pseudorandom generators, pseudorandom functions, private-key encryption schemes, digital signatures, commitment schemes, and more).
- Mild average-case hardness of $K^{poly}$-complexity: ...
more >>>
Whether one-way functions (OWF) exist is arguably the most important
problem in Cryptography, and beyond. While lots of candidate
constructions of one-way functions are known, and recently also
problems whose average-case hardness characterize the existence of
OWFs have been demonstrated, the question of
whether there exists some \emph{worst-case hard problem} ...
more >>>
We present the first natural $\NP$-complete problem whose average-case hardness w.r.t. the uniform distribution over instances implies the existence of one-way functions (OWF). In fact, we prove that the existence of OWFs is \emph{equivalent} to mild average-case hardness of this $\NP$-complete problem. The problem, which originated in the 1960s, is ... more >>>
Some operations over Boolean functions are considered. It is shown that
the operation of the geometrical projection and the operation of the
monotone extension can increase the complexity of Boolean functions for
formulas in each finite basis, for switching networks, for branching
programs, and read-$k$-times ...
more >>>
The existence of an optimal propositional proof system is a major open question in proof complexity; many people conjecture that such systems do not exist. Krajicek and Pudlak (1989) show that this question is equivalent to the existence of an algorithm that is optimal on all propositional tautologies. Monroe (2009) ... more >>>
We efficiently solve the optimal multi-dimensional mechanism design problem for independent bidders with arbitrary demand constraints when either the number of bidders is a constant or the number of items is a constant. In the first setting, we need that each bidder's values for the items are sampled from a ... more >>>
We prove that TAUT has a $p$-optimal proof system if and only if $L_\le$, a logic introduced in [Gurevich, 88], is a P-bounded logic for P. Furthermore, using the method developed in [Chen and Flum, 10], we show that TAUT has no \emph{effective} $p$-optimal proof system under some reasonable complexity-theoretic ... more >>>
This paper studies the interaction of oracles with algorithmic approaches to proving circuit complexity lower bounds, establishing new results on two different kinds of questions.
1. We revisit some prominent open questions in circuit lower bounds, and provide a clean way of viewing them as circuit upper bound questions. Let ... more >>>
It is known that if a Boolean function f in n variables
has a DNF and a CNF of size at most N then f also has a
(deterministic) decision tree of size $\exp(O(\log n\log^2 N)$.
We show that this simulation {\em cannot} be ...
more >>>
We study pseudorandom generator (PRG) constructions $G^f : {0,1}^l \to {0,1}^{l+s}$ from one-way functions $f : {0,1}^n \to {0,1}^m$. We consider PRG constructions of the form $G^f(x) = C(f(q_{1}) \ldots f(q_{poly(n)}))$
where $C$ is a polynomial-size constant depth circuit
and $C$ and the $q$'s are generated from $x$ arbitrarily.
more >>>
We study the complexity of parallelizing streaming algorithms (or equivalently, branching programs). If $M(f)$ denotes the minimum average memory required to compute a function $f(x_1,x_2, \dots, x_n)$ how much memory is required to compute $f$ on $k$ independent streams that arrive in parallel? We show that when the inputs (updates) ... more >>>
Combining classical approximability questions with parameterized complexity, we introduce a theory of parameterized approximability.
The main intention of this theory is to deal with the efficient approximation of small cost solutions for optimisation problems.
We prove that for every prime $p$ there exists a $(0,1)$-matrix
$M$ of size $t_p(n,m)\times n$ where
$$t_p(n,m)=O\left(m+\frac{m\log \frac{n}{m}}{\log \min({m,p})}\right)$$ such that every
$m$ columns of $M$ are linearly independent over $\Z_p$, the field
of integers modulo $p$ (and therefore over any field of
characteristic $p$ and over the real ...
more >>>
We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Our contributions are as follows. Let $f : \mathbb{F}_2^n \to \{-1, 1\}$ be a Boolean function with Fourier support ... more >>>
We consider the robustness of computational hardness of problems
whose input is obtained by applying independent random deletions to worst-case instances.
For some classical NP-hard problems on graphs, such as Coloring, Vertex-Cover, and Hamiltonicity, we examine the complexity of these problems when edges (or vertices) of an arbitrary
graph are ...
more >>>
Whether the class QMA (Quantum Merlin Arthur) is equal to QMA1, or QMA with one-sided error, has been an open problem for years. This note helps to explain why the problem is difficult, by using ideas from real analysis to give a "quantum oracle" relative to which QMA and QMA1 ... more >>>
The generalized pigeonhole principle says that if tN + 1 pigeons are put into N holes then there must be a hole containing at least t + 1 pigeons. Let t-PPP denote the class of all total NP-search problems reducible to finding such a t-collision of pigeons. We introduce a ... more >>>
We study approximation of Boolean functions by low-degree polynomials over the ring $\mathbb{Z}/2^k\mathbb{Z}$. More precisely, given a Boolean function F$:\{0,1\}^n \rightarrow \{0,1\}$, define its $k$-lift to be F$_k:\{0,1\}^n \rightarrow \{0,2^{k-1}\}$ by $F_k(x) = 2^{k-F(x)}$ (mod $2^k$). We consider the fractional agreement (which we refer to as $\gamma_{d,k}(F)$) of $F_k$ with ... more >>>
We make progress on some questions related to polynomial approximations of $\mathrm{AC}^0$. It is known, by works of Tarui (Theoret. Comput. Sci. 1993) and Beigel, Reingold, and Spielman (Proc. $6$th CCC 1991), that any $\mathrm{AC}^0$ circuit of size $s$ and depth $d$ has an $\varepsilon$-error probabilistic polynomial over the reals ... more >>>
Lower bounds are obtained on the degree and the number of monomials of
Boolean functions, considered as a polynomial over $GF(2)$,
which decide if a given $r$-bit integer is square-free.
Similar lower bounds are also obtained for polynomials
over the reals which provide a threshold representation
more >>>
We show that a fully polynomial time approximation scheme given
for an optimization problem can always be simply modified to a
polynomial time algorithm solving the problem optimally if the
computation model is the deterministic Turing Machine or the
logarithmic cost RAM and ...
more >>>
We study the complexity of problems solvable in deterministic polynomial time with access to an NP or Quantum Merlin-Arthur (QMA)-oracle, such as $P^{NP}$ and $P^{QMA}$, respectively.
The former allows one to classify problems more finely than the Polynomial-Time Hierarchy (PH), whereas the latter characterizes physically motivated problems such as Approximate ...
more >>>
The information contained in a string $x$ about a string $y$
is defined as the difference between the Kolmogorov complexity
of $y$ and the conditional Kolmogorov complexity of $y$ given $x$,
i.e., $I(x:y)=\C(y)-\C(y|x)$. From the well-known Kolmogorov--Levin Theorem it follows that $I(x:y)$ is symmetric up to a small ...
more >>>
We present the first constructions of *single*-prover proof systems that achieve *perfect* zero knowledge (PZK) for languages beyond NP, under no intractability assumptions:
1. The complexity class #P has PZK proofs in the model of Interactive PCPs (IPCPs) [KR08], where the verifier first receives from the prover a PCP and ... more >>>
We prove several new results regarding the relationship between probabilistic time, BPTime(t), and alternating time, \Sigma_{O(1)} Time(t). Our main results are the following:
1) We prove that BPTime(t) \subseteq \Sigma_3 Time(t polylog(t)). Previous results show that BPTime(t) \subseteq \Sigma_2 Time(t^2 log t) (Sipser and Gacs, STOC '83; Lautemann, IPL '83) ... more >>>
This note points out a gap between two natural formulations of
the concept of a proof of knowledge, and shows that in all
natural cases (e.g., NP-statements) this gap can be closed.
The aforementioned formulations differ by whether they refer to
(all possible) probabilistic or deterministic prover strategies.
Unlike ...
more >>>
The notion of promise problems was introduced and initially studied
by Even, Selman and Yacobi
(Information and Control, Vol.~61, pages 159-173, 1984).
In this article we survey some of the applications that this
notion has found in the twenty years that elapsed.
These include the notion ...
more >>>
The refutation system ${Res}_R({PC}_d)$ is a natural extension of resolution refutation system such that it operates with disjunctions of degree $d$ polynomials over ring $R$ with boolean variables. For $d=1$, this system is called ${Res}_R({lin})$. Based on properties of $R$, ${Res}_R({lin})$ systems can be too strong to prove lower ... more >>>
In this note we show that all sets that are neither finite nor too dense are non-trivial to test in the sense that, for every $\epsilon>0$, distinguishing between strings in the set and strings that are $\epsilon$-far from the set requires $\Omega(1/\epsilon)$ queries.
Specifically, we show that if, for ...
more >>>
Over the years, proof systems for propositional satisfiability (SAT)
have been extensively studied. Recently, proof systems for
quantified Boolean formulas (QBFs) have also been gaining attention.
Q-resolution is a calculus enabling producing proofs from
DPLL-based QBF solvers. While DPLL has become a dominating technique
for SAT, QBF has been tackled ...
more >>>
In this paper we study the pairs $(U,V)$ of disjoint ${\bf NP}$-sets
representable in a theory $T$ of Bounded Arithmetic in the sense that
$T$ proves $U\cap V=\emptyset$. For a large variety of theories $T$
we exhibit a natural disjoint ${\bf NP}$-pair which is complete for the
class of disjoint ...
more >>>
A central question in the study of interactive proofs is the relationship between private-coin proofs, where the verifier is allowed to hide its randomness from the prover, and public-coin proofs, where the verifier's random coins are sent to the prover.
In this work, we study transformations ...
more >>>
We initiate a systematic study of a special type of property testers.
These testers consist of repeating a basic test
for a number of times that depends on the proximity parameters,
whereas the basic test is oblivious of the proximity parameter.
We refer to such basic ...
more >>>
In the theory of pseudorandomness, potential (uniform) observers
are modeled as probabilistic polynomial-time machines.
In fact many of the central results in
that theory are proven via probabilistic polynomial-time reductions.
In this paper we show that analogous deterministic reductions
are unlikely to hold. We conclude that randomness ...
more >>>
Several well-known public key encryption schemes, including those of Alekhnovich (FOCS 2003), Regev (STOC 2005), and Gentry, Peikert and Vaikuntanathan (STOC 2008), rely on the conjectured intractability of inverting noisy linear encodings. These schemes are limited in that they either require the underlying field to grow with the security parameter, ... more >>>
We prove that for every Boolean function, the public-coin zero-error randomized communication complexity and the deterministic communication complexity are polynomially equivalent.
more >>>Q-resolution and its variations provide the underlying proof
systems for the DPLL-based QBF solvers. While (long-distance) Q-resolution
models a conflict driven clause learning (CDCL) QBF solver, it is not
known whether the inverse is also true. This paper provides a negative
answer to this question. This contrasts with SAT solving, ...
more >>>
Aaronson and Ambainis (STOC 2015, SICOMP 2018) claimed that the acceptance probability of every quantum algorithm that makes $q$ queries to an $N$-bit string can be estimated to within $\epsilon$ by a randomized classical algorithm of query complexity $O_q((N/\epsilon^2)^{1-1/2q})$. We describe a flaw in their argument but prove that the ... more >>>
In the Subset Sum problem, we are given n integers a_1,...,a_n
and a target number t, and are asked to find the subset of the
a_i's such that the sum is t. A version of the subset sum
problem is the Random Modular Subset Sum problem. In this version,
the ...
more >>>
There are Boolean functions such that almost all orderings of
its variables yield an OBDD of polynomial size, but there are
also some exceptional orderings, for which the size is exponential.
We prove that for parity OBDDs the size for a random ordering
...
more >>>
We study the power of randomized polynomial-time non-adaptive reductions to the problem of approximating Kolmogorov complexity and its polynomial-time bounded variants.
As our first main result, we give a sharp dichotomy for randomized non-adaptive reducibility to approximating Kolmogorov complexity. We show that any computable language $L$ that has a randomized ... more >>>
In contrast to deterministic or nondeterministic computation, it is
a fundamental open problem in randomized computation how to separate
different randomized time classes (at this point we do not even know
how to separate linear randomized time from ${\mathcal O}(n^{\log n})$
randomized time) or how to ...
more >>>
We consider randomness extraction by AC0 circuits. The main parameter, $n$, is the length of the source, and all other parameters are functions of it. The additional extraction parameters are the min-entropy bound $k=k(n)$, the seed length $r=r(n)$, the output length $m=m(n)$, and the (output) deviation bound $\epsilon=\epsilon(n)$.
For $k ... more >>>
This paper concerns the open problem of Lovasz and
Saks regarding the relationship between the communication complexity
of a boolean function and the rank of the associated matrix.
We first give an example exhibiting the largest gap known. We then
prove two related theorems.
We consider read-$k$ determinantal representations of polynomials and prove some non-expressibility results. A square matrix $M$ whose entries are variables or field elements will be called \emph{read-$k$}, if every variable occurs at most $k$ times in $M$. It will be called a \emph{determinantal representation} of a polynomial $f$ if $f=\det(M)$. ... more >>>
We consider some problems about pairs of disjoint $NP$ sets.
The theory of these sets with a natural concept of reducibility
is, on the one hand, closely related to the theory of proof
systems for propositional calculus, and, on the other, it
resembles the theory of NP completeness. Furthermore, such
more >>>
We propose a variant of the $2$-to-$1$ Games Conjecture that we call the Rich $2$-to-$1$ Games Conjecture and show that it is equivalent to the Unique Games Conjecture. We are motivated by two considerations. Firstly, in light of the recent proof of the $2$-to-$1$ Games Conjecture, we hope to understand ... more >>>
We introduce a class of polynomials, which we call \emph{subspace polynomials} and show that the problem of explicitly constructing a rigid matrix can be reduced to the problem of explicitly constructing a small hitting set for this class. We prove that small-bias sets are hitting sets for the class of ... more >>>
The standard definition of property testing endows the tester with the ability to make arbitrary queries to ``elements''
of the tested object.
In contrast, sample-based testers only obtain independently distributed elements (a.k.a. labeled samples) of the tested object.
While sample-based testers were defined by
Goldreich, Goldwasser, and Ron ({\em JACM}\/ ...
more >>>
We obtain improved lower bounds for a class of static and dynamic
data structure problems that includes several problems of searching
sorted lists as special cases.
These lower bounds nearly match the upper bounds given by recent
striking improvements in searching algorithms given by Fredman and
Willard's ...
more >>>
Secret-sharing is one of the most basic and oldest primitives in cryptography, introduced by Shamir and Blakely in the 70s. It allows to strike a meaningful balance between availability and confidentiality of secret information. It has a host of applications most notably in threshold cryptography and multi-party computation. All known ... more >>>
We give the first extension of the result due to Paul, Pippenger,
Szemeredi and Trotter that deterministic linear time is distinct from
nondeterministic linear time. We show that DTIME(n \sqrt(log^{*}(n)))
\neq NTIME(n \sqrt(log^{*}(n))). We show that atleast one of the
following statements holds: (1) P \neq L ...
more >>>
We give a new characterization of the Sherali-Adams proof system, showing that there is a degree-$d$ Sherali-Adams refutation of an unsatisfiable CNF formula $C$ if and only if there is an $\varepsilon > 0$ and a degree-$d$ conical junta $J$ such that $viol_C(x) - \varepsilon = J$, where $viol_C(x)$ counts ... more >>>
We obtain an exponential separation between consecutive
levels in the hierarchy of classes of functions computable by
polynomial-size syntactic read-$k$-times branching programs, for
{\em all\/} $k>0$, as conjectured by various
authors~\cite{weg87,ss93,pon95b}. For every $k$, we exhibit two
explicit functions that can be computed by linear-sized
read-$(\kpluso)$-times branching programs but ...
more >>>
A Boolean maximum constraint satisfaction problem, Max-CSP\((f)\), is specified by a predicate \(f:\{-1,1\}^k\to\{0,1\}\). An \(n\)-variable instance of Max-CSP\((f)\) consists of a list of constraints, each of which applies \(f\) to \(k\) distinct literals drawn from the \(n\) variables. For \(k=2\), Chou, Golovnev, and Velusamy [CGV20, FOCS 2020] obtained explicit ratios ... more >>>
In this paper we study interactive ``one-shot'' analogues of the classical Slepian-Wolf theorem. Alice receives a value of a random variable $X$, Bob receives a value of another random variable $Y$ that is jointly distributed with $X$. Alice's goal is to transmit $X$ to Bob (with some error probability $\varepsilon$). ... more >>>
We study Frege proofs for the one-to-one graph Pigeon Hole Principle
defined on the $n\times n$ grid where $n$ is odd.
We are interested in the case where each formula
in the proof is a depth $d$ formula in the basis given by
$\land$, $\lor$, and $\neg$. We prove that ...
more >>>
We prove that a small-depth Frege refutation of the Tseitin contradiction
on the grid requires subexponential size.
We conclude that polynomial size Frege refutations
of the Tseitin contradiction must use formulas of almost
logarithmic depth.
In a recent result of Bhargava, Saraf and Volkovich [FOCS’18; JACM’20], the first sparsity bound for constant individual degree polynomials was shown. In particular, it was shown that any factor of a polynomial with at most $s$ terms and individual degree bounded by $d$ can itself have at most $s^{O(d^2\log ... more >>>
We prove a number of improved inaproximability results,
including the best up to date explicit approximation
thresholds for MIS problem of bounded degree, bounded
occurrences MAX-2SAT, and bounded degree Node Cover. We
prove also for the first time inapproximability of the
problem of Sorting by ...
more >>>
Improved inaproximability results are given, including the
best up to date explicit approximation thresholds for bounded
occurence satisfiability problems, like MAX-2SAT and E2-LIN-2,
and problems in bounded degree graphs, like MIS, Node Cover
and MAX CUT. We prove also for the first time inapproximability
more >>>
We show that the total space in resolution, as well as in any other reasonable
proof system, is equal (up to a polynomial and $(\log n)^{O(1)}$ factors) to
the minimum refutation depth. In particular, all these variants of total space
are equivalent in this sense. The same conclusion holds for ...
more >>>
In an attempt to generalize Christofides algorithm for metric TSP to the asymmetric TSP with triangle inequality we have studied various properties of directed spanning cacti. In this paper we first observe that finding the TSP in a directed, weighted complete graph with triangle inequality is polynomial time equivalent to ... more >>>
We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek (2006), as a family of unsatisfiable propositional formulas for which refutations of small size in any propositional proof system that possesses the feasible interpolation property imply an efficient *deterministic* refutation algorithm for random 3SAT with ... more >>>
We introduce a ``Statistical Query Sampling'' model, in which
the goal of an algorithm is to produce an element in a hidden set
$S\subseteq\bit^n$ with reasonable probability. The algorithm
gains information about $S$ through oracle calls (statistical
queries), where the algorithm submits a query function $g(\cdot)$
and receives ...
more >>>
Affine-invariant properties are an abstract class of properties that generalize some
central algebraic ones, such as linearity and low-degree-ness, that have been
studied extensively in the context of property testing. Affine invariant properties
consider functions mapping a big field $\mathbb{F}_{q^n}$ to the subfield $\mathbb{F}_q$ and include all
properties that form ...
more >>>
We present several variants of the sunflower conjecture of Erd\H{o}s and Rado and discuss the relations among them.
We then show that two of these conjectures (if true) imply negative answers to questions of Coppersmith and Winograd and Cohn et al. regarding possible approaches for obtaining fast matrix multiplication algorithms. ... more >>>
Unique Games Conjecture (UGC), proposed by [Khot02], lies in the center of many inapproximability results. At the heart of UGC lies approximability of MAX-CUT, which is a special instance of Unique Game.[KhotKMO04, MosselOO05] showed that assuming Unique Games Conjecture, it is NP-hard to distinguish between MAX-CUT instance that has a ... more >>>
The most intriguing aspect of the new theory of matchgate computations and holographic algorithms by Valiant~\cite{Valiant:Quantum} \cite{Valiant:Holographic} is that its reach and ultimate capability are wide open. The methodology produces unexpected polynomial time algorithms solving problems which seem to require exponential time. To sustain our belief in P $\not =$ ... more >>>
We attempt to reconcile the two distinct views of approximation
classes: syntactic and computational.
Syntactic classes such as MAX SNP allow for clean complexity-theoretic
results and natural complete problems, while computational classes such
as APX allow us to work with problems whose approximability is
well-understood. Our results give a computational ...
more >>>
In both query and communication complexity, we give separations between the class NISZK, containing those problems with non-interactive statistical zero knowledge proof systems, and the class UPP, containing those problems with randomized algorithms with unbounded error. These results significantly improve on earlier query separations of Vereschagin [Ver95] and Aaronson [Aar12] ... more >>>
Continuing a line of investigation that has studied the
function classes #P, #SAC^1, #L, and #NC^1, we study the
class of functions #AC^0. One way to define #AC^0 is as the
class of functions computed by constant-depth polynomial-size
arithmetic circuits of unbounded fan-in addition ...
more >>>
This text provides a basic presentation of the the approximation method of Razborov (Matematicheskie Zametki, 1987) and its application by Smolensky (19th STOC, 1987) for proving lower bounds on the size of ${\cal AC}^0[p]$-circuits that compute sums mod~$q$ (for primes $q\neq p$).
The textbook presentations of the latter result ...
more >>>
An affine-invariant property over a finite field is a property of functions over F_p^n that is closed under all affine transformations of the domain. This class of properties includes such well-known beasts as low-degree polynomials, polynomials that nontrivially factor, and functions of low spectral norm. The last few years has ... more >>>
We consider the problem of testing asymmetry in the bounded-degree graph model, where a graph is called asymmetric if the identity permutation is its only automorphism. Seeking to determine the query complexity of this testing problem, we provide partial results. Considering the special case of $n$-vertex graphs with connected components ... more >>>
A bent function is a Boolean function all of whose Fourier coefficients are equal in absolute value. These functions have been extensively studied in cryptography and play an important role in cryptanalysis and design of cryptographic systems.
We study bent functions in the framework of property testing. In particular, we ...
more >>>
We take another step in the study of the testability
of small-width OBDDs, initiated by Ron and Tsur (Random'09).
That is, we consider algorithms that,
given oracle access to a function $f:\{0,1\}^n\to\{0,1\}$,
need to determine whether $f$ can be implemented
by some restricted class of OBDDs or is far from
more >>>
We consider testing graph expansion in the bounded-degree graph model.
Specifically, we refer to algorithms for testing whether the graph
has a second eigenvalue bounded above by a given threshold
or is far from any graph with such (or related) property.
We present a natural algorithm aimed ... more >>>
Following Ergun et al. (JCSS 2000), we consider testing group properties and focus on the problem of testing whether a binary operation is a group operation.
That is, given a finite set $S$ and oracle access to a function $f:S\times S \to S$, we wish to distinguish the case that ...
more >>>
We show that testing Hamiltonicity in the bounded-degree graph model requires a linear number of queries. This refers to both the path and the cycle versions of the problem, and similar results hold also for the directed analogues.
In addition, we present an alternative proof for the known fact that ...
more >>>
Let $P$ be a fixed graph (hereafter called a ``pattern''), and let
$Subgraph(P)$ denote the problem of deciding whether a given graph $G$
contains a subgraph isomorphic to $P$. We are interested in
$AC^0$-complexity of this problem, determined by the smallest possible exponent
$C(P)$ for which $Subgraph(P)$ possesses bounded-depth circuits ...
more >>>
Andreev's Problem asks the following: Given an integer $d$ and a subset of $S \subseteq \mathbb{F}_q \times \mathbb{F}_q$, is there a polynomial $y = p(x)$ of degree at most $d$ such that for every $a \in \mathbb{F}_q$, $(a,p(a)) \in S$? We show an $\text{AC}^0[\oplus]$ lower bound for this problem.
... more >>>We show that the ''majority is least stable'' conjecture is true for $n=1$ and $3$ and false for all odd $n\geq 5$.
more >>>We study a natural and quite general model of branch-and-bound algorithms. In this model, an algorithm attempts to minimize (or maximize) a function $f : D \to \mathbb{R}_{\geq 0}$ by making oracle queries to a heuristic $h_f$ satisfying
\[
\min_{x \in S} f(x) \leq h_f(S) \leq \gamma \cdot ...
more >>>
We study the problem of non-interactive correlation distillation
(NICD). Suppose Alice and Bob each has a string, denoted by
$A=a_0a_1\cdots a_{n-1}$ and $B=b_0b_1\cdots b_{n-1}$,
respectively. Furthermore, for every $k=0,1,...,n-1$, $(a_k,b_k)$ is
independently drawn from a distribution $\noise$, known as the ``noise
mode''. Alice and Bob wish to ``distill'' the correlation
more >>>
Informally, an <i>obfuscator</i> <b>O</b> is an (efficient, probabilistic)
"compiler" that takes as input a program (or circuit) <b>P</b> and
produces a new program <b>O(P)</b> that has the same functionality as <b>P</b>
yet is "unintelligible" in some sense. Obfuscators, if they exist,
would have a wide variety of cryptographic ...
more >>>
In 1986, Fiat and Shamir suggested a general method for transforming secure 3-round public-coin identification schemes into digital signature schemes. The significant contribution of this method is a means for designing efficient digital signatures, while hopefully achieving security against chosen message attacks. All other known constructions which achieve such security ... more >>>
The Minimum Circuit Size Problem (MCSP) is: given the truth table of a Boolean function $f$ and a size parameter $k$, is the circuit complexity of $f$ at most $k$? This is the definitive problem of circuit synthesis, and it has been studied since the 1950s. Unlike many problems of ... more >>>
In this paper we present a new approximation algorithm for the MAX ACYCLIC SUBGRAPH problem. Given an instance where the maximum acyclic subgraph contains (1/2 + delta) fraction of all edges, our algorithm finds an acyclic subgraph with (1/2 + Omega(delta/ log n)) fraction of all edges.
more >>>In the framework of the Blum-Shub-Smale real number model \cite{BSS}, we study the {\em algebraic complexity} of the integer linear programming problem
(ILP$_{\bf R}$) : Given a matrix $A \in {\bf R}^{m \times n}$ and vectors
$b \in {\bf R}^m$, $d \in {\bf R}^n$, decide if there is $x ...
more >>>
We show that given a quantum measurement, for an overwhelming majority of pure states, no meaningful information is produced. This is independent of the number of outcomes of the quantum measurement. Due to conservation inequalities, such random noise cannot be processed into coherent data.
more >>>Given a finite set of straight line segments $S$ in $R^{2}$ and some $k\in N$, is there a subset $V$ of points on segments in $S$ with $\vert V \vert \leq k$ such that each segment of $S$ contains at least one point in $V$? This is a special case ... more >>>
We investigate the computational complexity of two classes of
combinatorial optimization problems related to linear systems
and study the relationship between their approximability properties.
In the first class (MIN ULR) one wishes, given a possibly infeasible
system of linear relations, to find ...
more >>>
We consider the Traveling Salesperson Problem (TSP) restricted
to Euclidean spaces of dimension at most k(n), where n is the number of
cities. We are interested in the relation between the asymptotic growth of
k(n) and the approximability of the problem. We show that the problem is ...
more >>>
We show that the problem of finding an \epsilon-approximate Nash equilibrium af an n*n two-person game can be reduced to the computation of an (\epsilon/n)^2-approximate market equilibrium of a Leontief economy. Together with a recent result of Chen, Deng and Teng, this polynomial reduction implies that the Leontief market exchange ... more >>>
First of all we give some reasons that “natural proofs” built not a barrier to prove P not= NP using Boolean complexity. Then we investigate the approximation method for its extension to prove super-polynomial lower bounds for the non-monotone complexity of suitable Boolean functions in NP or to understand why ... more >>>
We investigate the number of pairwise comparisons sufficient to sort $n$ elements chosen from a linearly ordered set. This number is shown to be $\log_2(n!) + o(n)$ thus improving over the previously known upper bounds of the form $\log_2(n!) + \Theta(n)$. The new bound is achieved by the proposed group ... more >>>
We show that the asymptotic complexity of uniformly generated (expressible in First-Order (FO) logic) propositional tautologies for the Nullstellensatz proof system (NS) as well as for Polynomial Calculus, (PC) has four distinct types of asymptotic behavior over fields of finite characteristic. More precisely, based on some highly non-trivial work by ... more >>>
We prove that Polynomial Calculus and Polynomial Calculus with Resolution are not automatizable, unless W[P]-hard problems are fixed parameter tractable by one-side error randomized algorithms. This extends to Polynomial Calculus the analogous result obtained for Resolution by Alekhnovich and Razborov (SIAM J. Computing, 38(4), 2008).
more >>>Having good algorithms to verify tautologies as efficiently as possible
is of prime interest in different fields of computer science.
In this paper we present an algorithm for finding Resolution refutations
based on finding tree-like Res(k) refutations. The algorithm is based on
the one of Beame and Pitassi \cite{BP96} ...
more >>>
A binary sequence A=A(0)A(1).... is called i.o. Turing-autoreducible if A is reducible to itself via an oracle Turing machine that never queries its oracle at the current input, outputs either A(x) or a don't-know symbol on any given input x, and outputs A(x) for infinitely many x. If in addition ... more >>>
Motivated by a recent study of Zimand (22nd CCC, 2007),
we consider the average-case complexity of property testing
(focusing, for clarity, on testing properties of Boolean strings).
We make two observations:
1) In the context of average-case analysis with respect to
the uniform distribution (on all strings of ...
more >>>
Motivated by the Beck-Fiala conjecture, we study discrepancy bounds for random sparse set systems. Concretely, these are set systems $(X,\Sigma)$, where each element $x \in X$ lies in $t$ randomly selected sets of $\Sigma$, where $t$ is an integer parameter. We provide new bounds in two regimes of parameters. We ... more >>>
We study the circuit complexity of linear transformations between Galois fields GF(2^{mn}) and their isomorphic composite fields GF((2^{m})^n). For such a transformation, we show a lower bound of \Omega(mn) on the number of gates required in any circuit consisting of constant-fan-in XOR gates, except for a class of transformations between ... more >>>
We consider the size of circuits which perfectly hash
an arbitrary subset $S\!\subset\!\bitset^n$ of cardinality $2^k$
into $\bitset^m$.
We observe that, in general, the size of such circuits is
exponential in $2k-m$,
and provide a matching upper bound.
In this paper we prove the following two results.
* We show that for any $C \in {mVF, mVP, mVNP}$, $C = \overline{C}$. Here, $mVF, mVP$, and $mVNP$ are monotone variants of $VF, VP$, and $VNP$, respectively. For an algebraic complexity class $C$, $\overline{C}$ denotes the closure of $C$. ...
more >>>
A couple of years ago, Blais, Brody, and Matulef put forward a methodology for proving lower bounds on the query complexity
of property testing via communication complexity. They provided a restricted formulation of their methodology
(via ``simple combining operators'')
and also hinted towards a more general formulation, which we spell ...
more >>>
We study the two-party communication complexity of finding an approximate Brouwer fixed point of a composition
of two Lipschitz functions $g\circ f : [0,1]^n \to [0,1]^n$, where Alice holds $f$ and Bob holds $g$. We prove an
exponential (in $n$) lower bound on the deterministic ...
more >>>
Key-agreement protocols whose security is proven in the random oracle model are an important alternative to the more common public-key based key-agreement protocols. In the random oracle model, the parties and the eavesdropper have access to a shared random function (an "oracle"), but they are limited in the number of ... more >>>
While the 3-dimensional analogue of the Sperner problem in the plane was known to be PPAD-complete, the complexity of the 2D-SPERNER itself is not known to be PPAD-complete or not. In this paper, we settle this open problem proposed by Papadimitriou~\cite{PAP90} fifteen years ago. This also allows us to derive ... more >>>
We investigate the complexity of languages that correspond to algebraic real numbers, and we present improved upper bounds on the complexity of these languages. Our key technical contribution is the presentation of improved uniform TC^0 circuits
for division, matrix powering, and related problems, where the improvement is in terms of ...
more >>>
We introduce and study the following natural total search problem, which we call the {\it heavy element avoidance} (Heavy Avoid) problem: for a distribution on $N$ bits specified by a Boolean circuit sampling it, and for some parameter $\delta(N) \ge 1/\poly(N)$ fixed in advance, output an $N$-bit string that has ... more >>>
Every Boolean function on $n$ variables can be expressed as a unique multivariate polynomial modulo $p$ for every prime $p$. In this work, we study how the degree of a function in one characteristic affects its complexity in other characteristics. We establish the following general principle: functions with low degree ... more >>>
We consider two basic computational problems
regarding discrete probability distributions:
(1) approximating the statistical difference (aka variation distance)
between two given distributions,
and (2) approximating the entropy of a given distribution.
Both problems are considered in two different settings.
In the first setting the approximation algorithm
more >>>
We say that a first-order formula $A(x_1,\dots,x_n)$ over $\mathbb{R}$ defines a Boolean function $f:\{0,1\}^n\rightarrow\{0,1\}$, if for every $x_1,\dots,x_n\in\{0,1\}$, $A(x_1,\dots,x_n)$ is true iff $f(x_1,\dots,x_n)=1$. We show that:
(i) every $f$ can be defined by a formula of size $O(n)$,
(ii) if $A$ is required to have at most $k\geq 1$ ...
more >>>
In a great variety of neuron models neural inputs are
combined using the summing operation. We introduce the concept of
multiplicative neural networks which contain units that multiply
their inputs instead of summing them and, thus, allow inputs to
interact nonlinearly. The class of multiplicative networks
comprises such widely known ...
more >>>
Similar to the role of Markov decision processes in reinforcement learning, Markov Games (also called Stochastic Games)lay down the foundation for the study of multi-agent reinforcement learning (MARL) and sequential agent interactions. In this paper, we introduce the solution concept, approximate Markov Perfect Equilibrium (MPE), to finite-state Stochastic Games repeated ... more >>>
We show that (1) the Minimal False QCNF search problem (MF-search) and
the Minimal Unsatisfiable LTL formula search problem (MU-search) are FPSPACE complete because of the very expressive power of QBF/LTL, (2) we extend the PSPACE-hardness of the MF decision problem to the MU decision problem. As a consequence, we ...
more >>>
We study the complexity of black-box constructions of
pseudorandom functions (PRF) from one-way functions (OWF)
that are secure against non-uniform adversaries. We show
that if OWF do not exist, then given as an oracle any
(inefficient) hard-to-invert function, one can compute a
PRF in polynomial time with only $k(n)$ oracle ...
more >>>
We prove a monotone interpolation property for split cuts which, together with results from Pudlak (1997), implies that cutting-plane proofs which use split cuts have exponential length in the worst case.
As split cuts are equivalent to mixed-integer rounding cuts and Gomory mixed-integer cuts, cutting-plane proofs using the above cuts ...
more >>>
We consider the complexity of enumerating ordered sets, defined as solving the following type of a computational problem: For a predetermined ordered set, given $i\in\N$, one is required to answer with the $i^{th}$ member of the set (according to the predetermined order).
Our focus is on countable sets such as ... more >>>
Loosely speaking, the effective support size of a distribution is the size of the support of a distribution that is close to it (in totally variation distance).
We study the complexity of estimating the effective support size of an unknown distribution when given samples of the distributions as well ...
more >>>
A two-party coin-flipping protocol is $\varepsilon$-fair if no efficient adversary can bias the output of the honest party (who always outputs a bit, even if the other party aborts) by more than $\varepsilon$. Cleve [STOC '86] showed that $r$-round $o(1/r)$-fair coin-flipping protocols do not exist. Awerbuch et al. [Manuscript '85] ... more >>>
We study the computational complexity of an optimization
version of the constraint satisfaction problem: given a set $F$ of
constraint functions, an instance consists of a set of variables $V$
related by constraints chosen from $F$ and a natural number $k$. The
problem is to decide whether there exists a ...
more >>>
The majority of results in computational learning theory
are concerned with concept learning, i.e. with the special
case of function learning for classes of functions
with range {0,1}. Much less is known about the theory of
learning functions with a larger range such
as N or R. In ...
more >>>
The group isomorphism problem consists in deciding whether two groups $G$ and $H$
given by their multiplication tables are isomorphic.
An algorithm for group isomorphism attributed to Tarjan runs in time $n^{\log n + O(1)}$, c.f. [Mil78].
Miller and Monk showed in [Mil79] that group isomorphism can be many-one ... more >>>
In this article we consider a basic problem in the layout of
VLSI-circuits, the channel-routing problem in the knock-knee mode.
We show that knock-knee channel routing with 3-terminal nets is
NP-complete and thereby settling a problem that was open for more
than a decade. In 1987, Sarrafzadeh showed that knock-knee ...
more >>>
Spiking neurons are models for the computational units in
biological neural systems where information is considered to be encoded
mainly in the temporal pattern of their activity. In a network of
spiking neurons a new set of parameters becomes relevant which has no
counterpart in traditional ...
more >>>
We prove a lower bound of $\Omega(m^2 \log m)$ for the size of
any arithmetic circuit for the product of two matrices,
over the real or complex numbers, as long as the circuit doesn't
use products with field elements of absolute value larger than 1
(where $m \times m$ is ...
more >>>
In this paper we study the complexity of factorization of polynomials in the free noncommutative ring $\mathbb{F}\langle x_1,x_2,\ldots,x_n\rangle$ of polynomials over the field $\mathbb{F}$ and noncommuting variables $x_1,x_2,\ldots,x_n$. Our main results are the following.
Although $\mathbb{F}\langle x_1,\dots,x_n \rangle$ is not a unique factorization ring, we note that variable-disjoint factorization in ... more >>>
We study two quite different approaches to understanding the complexity
of fundamental problems in numerical analysis. We show that both hinge
on the question of understanding the complexity of the following problem,
which we call PosSLP:
Given a division-free straight-line program
producing an integer N, decide whether N>0.
more >>>
It is shown that complexity of implementation of prefix sums of $m$ variables (i.e. functions $x_1 \cdot \ldots\cdot x_i$, $1\le i \le m$) by circuits of depth $\lceil \log_2 m \rceil$ in the case $m=2^n$ is exactly $$3.5\cdot2^n - (8.5+3.5(n \bmod 2))2^{\lfloor n/2\rfloor} + n + 5.$$ As a consequence, ... more >>>
In sequencing by hybridization (SBH),
one has to reconstruct a sequence
from its $l$-long substrings.
SBH was proposed as
an alternative to
gel-based
DNA sequencing approaches, but in its original form the method
is
not competitive.
Positional SBH (PSBH) is a recently proposed
enhancement ...
more >>>
We consider the problem of identifying a planted assignment given a random $k$-SAT formula consistent with the assignment. This problem exhibits a large algorithmic gap: while the planted solution can always be identified given a formula with $O(n\log n)$ clauses, there are distributions over clauses for which the best known ... more >>>
Given a matrix $M$ over a ring \Ringk, a target rank $r$ and a bound
$k$, we want to decide whether the rank of $M$ can be brought down to
below $r$ by changing at most $k$ entries of $M$. This is a decision
version of the well-studied notion of ...
more >>>
One of the most famous TFNP subclasses is PPP, which is the set of all search problems whose totality is guaranteed by the pigeonhole principle. The author's recent preprint [ECCC TR24-002 2024] has introduced a TFNP problem related to the pigeonhole principle over a quotient set, called Quotient Pigeon, and ... more >>>
We study the complexity of solving succinct zero-sum games,
i.e., the
games whose payoff matrix $M$ is given implicitly by a Boolean circuit
$C$ such that $M(i,j)=C(i,j)$. We complement the known $\EXP$-hardness
of computing the \emph{exact} value of a succinct zero-sum game by
several results on \emph{approximating} the value. (1) ...
more >>>
Motivated by certain applications from physics, biochemistry, economics, and computer science in which the objects under investigation are unknown or not directly accessible because of various limitations, we propose a trial-and-error model to examine search problems with unknown inputs. Given a search problem with a hidden input, we are asked ... more >>>
In a recent work of Bei, Chen and Zhang (STOC 2013), a trial and error model of computing was introduced, and applied to some constraint satisfaction problems. In this model the input is hidden by an oracle which, for a candidate assignment, reveals some information about a violated constraint if ... more >>>
In distributed differential privacy, the parties perform analysis over their joint data while preserving the privacy for both datasets. Interestingly, for a few fundamental two-party functions such as inner product and Hamming distance, the accuracy of the distributed solution lags way behind what is achievable in the client-server setting. McGregor, ... more >>>
For any Boolean functions $f$ and $g$, the question whether $\text{R}(f\circ g) = \tilde{\Theta}(\text{R}(f) \cdot \text{R}(g))$, is known as the composition question for the randomized query complexity. Similarly, the composition question for the approximate degree asks whether $\widetilde{\text{deg}}(f\circ g) = \tilde{\Theta}(\widetilde{\text{deg}}(f)\cdot\widetilde{\text{deg}}(g))$. These questions are two of the most important and ... more >>>
We initiate the study of the compressibility of NP problems. We
consider NP problems that have long instances but relatively
short witnesses. The question is, can one efficiently compress an
instance and store a shorter representation that maintains the
information of whether the original input is in the language or
more >>>
We develop quantum fingerprinting technique for constructing quantum
branching programs (QBPs), which are considered as circuits with an
ability to use classical bits as control variables.
We demonstrate our approach constructing optimal quantum ordered
binary decision diagram (QOBDD) for $MOD_m$ and $DMULT_n$ Boolean
functions. The construction of our technique also ...
more >>>
Given a Boolean formula in Conjunctive Normal Form (CNF) $\phi=S \cup H$, the MaxSAT (Maximum Satisfiability) problem asks for an assignment that satisfies the maximum number of clauses in $\phi$. Due to the good performance of current MaxSAT solvers, many real-life optimization problems such as scheduling can be solved efficiently ... more >>>
The paper analyzes in terms of polynomial time many-one reductions
the computational complexity of several natural equivalence
relations on Boolean functions which derive from replacing
variables by expressions. Most of these computational problems
turn out to be between co-NP and Sigma^p_2.
We study in this paper the computational complexity of some
equivalence relations on polynomial systems of equations over finite
fields. These problems are analyzed with respect to polynomial-time
many-one reductions (resp. Turing reductions, Levin reductions). In
particular, we show that some of these problems are between ...
more >>>
We show that deciding square-freeness of a sparse univariate
polynomial over the integer and over the algebraic closure of a
finite field is NP-hard. We also discuss some related open
problems about sparse polynomials.
We investigate the computational power of depth two circuits
consisting of $MOD^r$--gates at the bottom and a threshold gate at
the top (for short, threshold--$MOD^r$ circuits) and circuits with
two levels of $MOD$ gates ($MOD^{p}$-$MOD^q$ circuits.) In particular, we
will show the following results
(i) For all prime numbers ... more >>>
We survey some upper and lower bounds established recently on
the sizes of randomized branching programs computing explicit
boolean functions. In particular, we display boolean
functions on which randomized read-once ordered branching
programs are exponentially more powerful than deterministic
or nondeterministic read-$k$-times branching programs for ...
more >>>
Understanding the structure of real-time neural computation in
highly recurrent neural microcircuits that consist of complex
heterogeneous components has remained a serious challenge for
computational modeling. We propose here a new conceptual framework
that strongly differs from all previous approaches based on
computational models inspired ...
more >>>
In this paper the computational power of a new type of gate is studied:
winner-take-all gates. This work is motivated by the fact that the cost
of implementing a winner-take-all gate in analog VLSI is about the same
as that of implementing a threshold gate.
We show that ... more >>>
Probabilistically-Checkable Proofs (PCPs) form the algorithmic core that enables succinct verification of long proofs/computations in many cryptographic constructions, such as succinct arguments and proof-carrying data.
Despite the wonderful asymptotic savings they bring, PCPs are also the infamous computational bottleneck preventing these cryptographic constructions from being used in practice. This reflects ... more >>>
For $3 \leq q < Q$ we consider the $\text{ApproxColoring}(q,Q)$ problem of deciding for a given graph $G$ whether $\chi(G) \leq q$ or $\chi(G) \geq Q$. It was show in [DMR06] that the problem $\text{ApproxColoring}(q,Q)$ is NP-hard for $q=3,4$ and arbitrary large constant $Q$ under variants of the Unique Games ... more >>>
In this primarily expository
paper, we discuss the connections between two popular and useful
tools in theoretical computer science, namely,
universal hashing and pairwise
independent random variables; and classical combinatorial stuctures
such as error-correcting codes, balanced incomplete block designs,
difference matrices
...
more >>>
In this paper we study the possibility of proving the existence of
one-way functions based on average case hardness. It is well-known
that if there exists a polynomial-time sampler that outputs
instance-solution pairs such that the distribution on the instances
is hard on average, then one-way functions exist. We study ...
more >>>
Luby and Rackoff showed a method for constructing a pseudo-random
permutation from a pseudo-random function. The method is based on
composing four (or three for weakened security) so called Feistel
permutations each of which requires the evaluation of a pseudo-random
function. We reduce somewhat the complexity ...
more >>>
The input to the Tree Evaluation problem is a binary tree of height $h$ in which each internal vertex is associated with a function mapping pairs of $\ell$-bit strings to $\ell$-bit strings, and each leaf is assigned an $\ell$-bit string.
The desired output is the value of the root, ...
more >>>
We prove that the correlation of a depth-$d$
unbounded fanin circuit of size $S$ with parity
of $n$ variables is at most $2^{-\Omega(n/(\log S)^{d-1})}$.
We prove that finding a Nash equilibrium of a game is hard, assuming the existence of indistinguishability obfuscation and injective one-way functions with sub-exponential hardness. We do so by showing how these cryptographic primitives give rise to a hard computational problem that lies in the complexity class PPAD, for which ... more >>>
A lattice in euclidean space which is an orthogonal sum of
nontrivial sublattices is called decomposable. We present an algorithm
to construct a lattice's decomposition into indecomposable sublattices.
Similar methods are used to prove a covering theorem for generating
systems of lattices and to speed up variations of the LLL ...
more >>>
In this paper we ask the question whether the extended Frege proof
system EF satisfies a weak version of the deduction theorem. We
prove that if this is the case, then complete disjoint NP-pairs
exist. On the other hand, if EF is an optimal proof system, ...
more >>>
For an odd prime $p$, we say $f(X) \in {\mathbb F}_p[X]$ computes square roots in $\mathbb F_p$ if, for all nonzero perfect squares $a \in \mathbb F_p$, we have $f(a)^2 = a$.
When $p \equiv 3$ mod $4$, it is well known that $f(X) = X^{(p+1)/4}$ computes square ...
more >>>
In this paper we study the degree of non-constant symmetric functions $f:\{0,1\}^n \to \{0,1,\ldots,c\}$, where $c\in
\mathbb{N}$, when represented as polynomials over the real numbers. We show that as long as $c < n$ it holds that deg$(f)=\Omega(n)$. As we can have deg$(f)=1$ when $c=n$, our
result shows a surprising ...
more >>>
We study the following problem raised by von zur Gathen and Roche:
What is the minimal degree of a nonconstant polynomial $f:\{0,\ldots,n\}\to\{0,\ldots,m\}$?
Clearly, when $m=n$ the function $f(x)=x$ has degree $1$. We prove that when $m=n-1$ (i.e. the point $\{n\}$ is not in the range), it must be the case ... more >>>
We show that secure homomorphic evaluation of any non-trivial functionality of sufficiently many inputs with respect to any CPA secure encryption scheme cannot be implemented by constant depth, polynomial size circuits, i.e. in the class AC0. In contrast, we observe that certain previously studied encryption schemes (with quasipolynomial security) can ... more >>>
In this paper we separate many-one reducibility from truth-table
reducibility for distributional problems in DistNP under the
hypothesis that P neq NP. As a first example we consider the
3-Satisfiability problem (3SAT) with two different distributions
on 3CNF formulas. We show that 3SAT using a version of the
standard distribution ...
more >>>
Weak designs were defined by Raz, Reingold and Vadhan (1999) and are
used in constructions of extractors. Roughly speaking, a weak design
is a collection of subsets satisfying some near-disjointness
properties. Constructions of weak designs with certain parameters are
given in [RRV99]. These constructions are explicit in the sense that
more >>>
We present a somewhat simpler variant of the doubly-efficient interactive proof systems of Goldwasser, Kalai, and Rothblum (JACM, 2015).
Recall that these proof systems apply to log-space uniform sets in NC (or, more generally, to inputs that are acceptable by log-space uniform bounded-depth circuits, where the number of rounds in ...
more >>>
We introduce a model for analog computation with discrete
time in the presence of analog noise
that is flexible enough to cover the most important concrete
cases, such as noisy analog neural nets and networks of spiking neurons.
This model subsumes the classical ...
more >>>
This note refers to the effect of the proximity parameter on the operation of (standard) property testers. Its bottom-line is that, except in pathological cases, the effect of the proximity parameter is restricted to determining the query complexity of the tester. The point is that, in non-pathological cases, the mapping ... more >>>
We define a non-uniform model of PCPs of Proximity, and observe that in this model the non-uniform verifiers can always be made very efficient. Specifically, we show that any non-uniform verifier can be modified to run in time that is roughly polynomial in its randomness and query complexity.
more >>>A polynomial time approximation scheme (PTAS) for an optimization
problem $A$ is an algorithm that on input an instance of $A$ and
$\epsilon > 0$ finds a $(1+\epsilon)$-approximate solution in time
that is polynomial for each fixed $\epsilon$. Typical running times
are $n^{O(1/\epsilon)}$ or $2^{1/\epsilon^{O(1)}} ...
more >>>
Let $f$ be a nonnegative function on $\{0,1\}^n$. We upper bound the entropy of the image of $f$ under the noise operator with noise parameter $\epsilon$ by the average entropy of conditional expectations of $f$, given sets of roughly $(1-2\epsilon)^2 \cdot n$ variables.
As an application, we show that for ... more >>>
We investigate the complexity of enumerative approximation of
two elementary problems in linear algebra, computing the rank
and the determinant of a matrix. In particular, we show that
if there exists an enumerator that, given a matrix, outputs a
list of constantly many numbers, one of which is guaranteed to
more >>>
Optimal dispersers have better dependence on the error than
optimal extractors. In this paper we give explicit disperser
constructions that beat the best possible extractors in some
parameters. Our constructions are not strong, but we show that
having such explicit strong constructions implies a solution
to the Ramsey graph construction ...
more >>>
For every constant c > 0, we show that there is a family {P_{N,c}} of polynomials whose degree and algebraic circuit complexity are polynomially bounded in the number of variables, and that satisfies the following properties:
* For every family {f_n} of polynomials in VP, where f_n is an n ...
more >>>
The size of Ordered Binary Decision Diagrams (OBDDs) is
determined by the chosen variable ordering. A poor choice may cause an
OBDD to be too large to fit into the available memory. The decision
variant of the variable ordering problem is known to be
NP-complete. We strengthen this result by ...
more >>>
We investigate sufficient conditions for the existence of
optimal propositional proof systems (PPS).
We concentrate on conditions of the form CoNF = NF.
We introduce a purely combinatorial property of complexity classes
- the notions of {\em slim} vs. {\em fat} classes.
These notions partition the ...
more >>>
While the existence of randomness extractors, both seeded and seedless, has been thoroughly studied for many sources of randomness, currently, very little is known regarding the existence of seedless condensers in many settings. Here, we prove several new results for seedless condensers in the context of three related classes of ... more >>>
The working conjecture from K'04 that there is a proof complexity generator hard for all
proof systems can be equivalently formulated (for p-time generators) without a reference to proof complexity notions
as follows:
\begin{itemize}
\item There exist a p-time function $g$ extending each input by one bit such that its ...
more >>>
Let $d \geq d_0$ be a sufficiently large constant. A $(n,d,c
\sqrt{d})$ graph $G$ is a $d$ regular graph over $n$ vertices whose
second largest eigenvalue (in absolute value) is at most $c
\sqrt{d}$. For any $0 < p < 1, ~G_p$ is the graph induced by
retaining each edge ...
more >>>
We introduce and study the notion of read-$k$ projections of the determinant: a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ is called a {\it read-$k$ projection of determinant} if $f=det(M)$, where entries of matrix $M$ are either field elements or variables such that each variable appears at most $k$ times in ... more >>>
We set out to study the impact of having access to correlated instances on the fine grained complexity of polynomial time problems, which have notoriously resisted improvement.
In particular, we show how to use a logarithmic number of auxiliary correlated instances to obtain $o(n^2)$ time algorithms for the longest common ...
more >>>
Least Weight Subsequence (LWS) is a type of highly sequential optimization problems with form $F(j) = \min_{i < j} [F(i) + c_{i,j}]$. They can be solved in quadratic time using dynamic programming, but it is not known whether these problems can be solved faster than $n^{2-o(1)}$ time. Surprisingly, each such ... more >>>
We show that for sufficiently large $n\geq 1$ and $d=C n^{3/4}$ for some universal constant $C>0$, a random spectrahedron with matrices drawn from Gaussian orthogonal ensemble has Gaussian surface area $\Theta(n^{1/8})$ with high probability.
more >>>We give a new proof showing that it is NP-hard to color a 3-colorable
graph using just four colors. This result is already known (Khanna,
Linial, Safra 1992), but our proof is novel as it does not rely on
the PCP theorem, while the earlier one does. This ...
more >>>
In this paper we study the (Bichromatic) Maximum Inner Product Problem (Max-IP), in which we are given sets $A$ and $B$ of vectors, and the goal is to find $a \in A$ and $b \in B$ maximizing inner product $a \cdot b$. Max-IP is very basic and serves ...
more >>>
We study bounded degree graph problems, mainly the problem of
k-Dimensional Matching \emph{(k-DM)}, namely, the problem of
finding a maximal matching in a k-partite k-uniform balanced
hyper-graph. We prove that k-DM cannot be efficiently approximated
to within a factor of $ O(\frac{k}{ \ln k}) $ unless $P = NP$.
This ...
more >>>
The label-cover problem was introduced in \cite{ABSS} and shown
there to be quasi-NP-hard to approximate to within a factor of
$2^{\log^{1-\delta}n}$ for any {\em constant} $\delta>0$. This
combinatorial graph problem has been utilized \cite{ABSS,GM,ABMP}
for showing hardness-of-approximation of numerous problems. We
present a direct combinatorial reduction from low
error-probability PCP ...
more >>>
Max-Satisfy is the problem of finding an assignment that satisfies
the maximum number of equations in a system of linear equations
over $\mathbb{Q}$. We prove that unless NP$\subseteq $BPP there is no
polynomial time algorithm for the problem achieving an
approximation ratio of $1/n^{1-\epsilon}$, where $n$ is the number
of ...
more >>>
When is decoherence "effectively irreversible"? Here we examine this central question of quantum foundations using the tools of quantum computational complexity. We prove that, if one had a quantum circuit to determine if a system was in an equal superposition of two orthogonal states (for example, the $|$Alive$\rangle$ and $|$Dead$\rangle$ ... more >>>
This work investigates the hardness of computing sparse solutions to systems of linear equations over $\mathbb{F}_2$. Consider the $k$-EvenSet problem: given a homogeneous system of linear equations over $\mathbb{F}_2$ on $n$ variables, decide if there exists a nonzero solution of Hamming weight at most $k$ (i.e. a $k$-sparse solution). While ... more >>>
We investigate the computational hardness of the {\sc Connectivity},
the {\sc Strong Connectivity} and the {\sc Broadcast} type of Range
Assignment Problems in $\R^2$ and $\R^3$.
We present new reductions for the {\sc Connectivity} problem, which
are easily adapted to suit the other two problems. All reductions
are considerably simpler ...
more >>>
It is becoming increasingly important to understand the vulnerability of machine learning models to adversarial attacks. In this paper we study the feasibility of robust learning from the perspective of computational learning theory, considering both sample and computational complexity. In particular, our definition of robust learnability requires polynomial sample complexity. ... more >>>
In this paper we study the computational complexity of computing the noncommutative determinant. We first consider the arithmetic circuit complexity of computing the noncommutative determinant polynomial. Then, more generally, we also examine the complexity of computing the determinant (as a function) over noncommutative domains. Our hardness results are summarized below:
... more >>>We study the impact of combinatorial structure in congestion games on the complexity of computing pure Nash equilibria and the convergence time of best response sequences. In particular, we investigate which properties of the strategy spaces of individual players ensure a polynomial convergence time. We show, if the strategy space ... more >>>
We initiate a general study of pseudo-random implementations
of huge random objects, and apply it to a few areas
in which random objects occur naturally.
For example, a random object being considered may be
a random connected graph, a random bounded-degree graph,
or a random error-correcting code with good ...
more >>>
Zero knowledge proof systems have been widely studied in cryptography. In the statistical setting, two classes of proof systems studied are Statistical Zero Knowledge (SZK) and Non-Interactive Statistical Zero Knowledge (NISZK), where the difference is that in NISZK only very limited communication is allowed between the verifier and the prover. ... more >>>
In this paper three complexity measures are studied: (i) internal information, (ii) external information, and (iii) a measure called here "output information". Internal information (i) measures the counter-party privacy-loss inherent in a communication protocol. Similarly, the output information (iii) measures the reduction in input-privacy that is inherent when the output ... more >>>
We study a model of computation where executing a program on an input corresponds to calculating a product in a finite monoid. We show that in this model, the subsets of {0,1}^n that can be recognized by nilpotent groups have exponential cardinality.
Translator's note: This is a translation of the ... more >>>
A clone is a set of functions that is closed under generalized substitution.
The set FP of functions being computable deterministically in polynomial
time is such a clone. It is well-known that the set of subclones of every
clone forms a lattice. We study the lattice below FP, which ...
more >>>
Although a simple counting argument shows the existence of Boolean functions of exponential circuit complexity, proving superlinear circuit lower bounds for explicit functions seems to be out of reach of the current techniques. There has been a (very slow) progress in proving linear lower bounds with the latest record of ... more >>>
We show simple constant-round interactive proof systems for
problems capturing the approximability, to within a factor of $\sqrt{n}$,
of optimization problems in integer lattices; specifically,
the closest vector problem (CVP), and the shortest vector problem (SVP).
These interactive proofs are for the ``coNP direction'';
that is, ...
more >>>
Impagliazzo, Paturi and Zane (JCSS 2001) proved a sparsification lemma for $k$-CNFs:
every k-CNF is a sub-exponential size disjunction of $k$-CNFs with a linear
number of clauses. This lemma has subsequently played a key role in the study
of the exact complexity of the satisfiability problem. A natural question is
more >>>
We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound.
In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound.
It was previously known that there are Reed-Solomon codes that do not have this ...
more >>>
For every fixed finite field $\F_q$, $p \in (0,1-1/q)$ and $\varepsilon >
0$, we prove that with high probability a random subspace $C$ of
$\F_q^n$ of dimension $(1-H_q(p)-\varepsilon)n$ has the
property that every Hamming ball of radius $pn$ has at most
$O(1/\varepsilon)$ codewords.
This ... more >>>
Consider a linear $[n,k,d]_q$ code $\mc{C}.$ We say that that $i$-th coordinate of $\mc{C}$ has locality $r,$ if the value at this coordinate can be recovered from accessing some other $r$ coordinates of $\mc{C}.$ Data storage applications require codes with small
redundancy, low locality for information coordinates, large distance, and ...
more >>>
This text provides a high-level description of the locally testable code constructed by Dinur, Evra, Livne, Lubotzky, and Mozes (ECCC, TR21-151).
In particular, the group theoretic aspects are abstracted as much as possible.
In this paper, we reduce the logspace shortest path problem to biconnected graphs; in particular, we present a logspace shortest path algorithm for general graphs which uses a logspace shortest path oracle for biconnected graphs. We also present a linear time logspace shortest path algorithm for graphs with bounded vertex ... more >>>
In the present paper we show some new complexity bounds for
the matching problem for special graph classes.
We show that for graphs with a polynomially bounded number
of nice cycles, the decision perfect matching problem is in
$SPL$, it is hard for $FewL$, and the construction ...
more >>>
We investigate the computational complexity of languages
which have interactive proof systems of bounded message complexity.
In particular, we show that
(1) If $L$ has an interactive proof in which the total
communication is bounded by $c(n)$ bits
then $L$ can be recognized a probabilitic machine
in time ...
more >>>
In this paper we give a new upper bound on the minimal degree of a nonzero Fourier coefficient in any non-linear symmetric Boolean function.
Specifically, we prove that for every non-linear and symmetric $f:\{0,1\}^{k} \to \{0,1\}$ there exists a set $\emptyset\neq S\subset[k]$ such that $|S|=O(\Gamma(k)+\sqrt{k})$, and $\hat{f}(S) \neq 0$, where ...
more >>>
Ordered binary decision diagrams (OBDDs) are a popular data structure for Boolean functions.
Some applications work with a restricted variant called complete OBDDs
which is strongly related to nonuniform deterministic finite automata.
One of its complexity measures is the width which has been investigated
in several areas in computer science ...
more >>>
[ This paper is a (self contained) chapter in a new book on computational complexity theory, called Mathematics and Computation, available at https://www.math.ias.edu/avi/book ].
I attempt to give here a panoramic view of the Theory of Computation, that demonstrates its place as a revolutionary, disruptive science, and as a central, ... more >>>
Integer multiplication as one of the basic arithmetic functions has been
in the focus of several complexity theoretical investigations.
Ordered binary decision diagrams (OBDDs) are one of the most common
dynamic data structures for boolean functions.
Among the many areas of application are verification, model checking,
computer-aided design, relational algebra, ...
more >>>
A function $f$ mapping $n$-bit strings to $m$-bit strings can be constructed from a bipartite graph with $n$ vertices on the left and $m$ vertices on the right having right-degree $d$ together with a predicate $P:\{0,1\}^d\rightarrow\{0,1\}$. The vertices on the left correspond to the bits of the input to the ... more >>>
We show that if DTIME[2^{O(n)}] is not included in DSPACE}[2^{o(n)}], then, for every set B in PSPACE, all strings x in B of length n can be represented by a string compressed(x) of length at most log (|B^{=n}|) + O(log n), such that a polynomial-time algorithm, given compressed(x), can distinguish ... more >>>
In this paper we will be concerned with a large class of packing
and covering problems which includes Vertex Cover and Independent Set.
Typically, for NP-hard problems among them, one can write an LP relaxation and
then round the solution. For instance, for Vertex Cover, one can obtain a
more >>>
We prove a general lower bound on the size of branching programs over any semiring of zero characteristic, including the (min,+) semiring. Using it, we show that the classical dynamic programming algorithm of Bellman, Ford and Moore for the shortest s-t path problem is optimal, if only Min and Sum ... more >>>
We study the parameterized complexity of approximating the $k$-Dominating Set (domset) problem where an integer $k$ and a graph $G$ on $n$ vertices are given as input, and the goal is to find a dominating set of size at most $F(k) \cdot k$ whenever the graph $G$ has a dominating ... more >>>
We make progress on understanding a lower bound technique that was recently used by the authors to prove the first superpolynomial constant-depth circuit lower bounds against algebraic circuits.
More specifically, our previous work applied the well-known partial derivative method in a new setting, that of 'lopsided' set-multilinear polynomials. A ... more >>>
Dutton presents a further HEAPSORT variant called
WEAK-HEAPSORT which also contains a new data structure for
priority queues. The sorting algorithm and the underlying
data structure ara analyzed showing that WEAK-HEAPSORT is
the best HEAPSORT variant and that it has a lot of nice
more >>>
We study the possibilities and limitations
of pseudodeterministic algorithms,
a notion put forward by Gat and Goldwasser (2011).
These are probabilistic algorithms that solve search problems
such that on each input, with high probability, they output
the same solution, which may be thought of as a canonical solution.
We consider ...
more >>>
Liu and Pass (FOCS'20) recently demonstrated an equivalence between the existence of one-way functions (OWFs) and mild average-case hardness of the time-bounded Kolmogorov complexity problem. In this work, we establish a similar equivalence but to a different form of time-bounded Kolmogorov Complexity---namely, Levin's notion of Kolmogorov Complexity---whose hardness is closely ... more >>>
The Stabbing Planes proof system was introduced to model the reasoning carried out in practical mixed integer programming solvers. As a proof system, it is powerful enough to simulate Cutting Planes and to refute the Tseitin formulas -- certain unsatisfiable systems of linear equations mod 2 -- which are canonical ... more >>>
Given a finite set $S$ of points (i.e. the stations of a radio
network) on a $d$-dimensional Euclidean space and a positive integer
$1\le h \le |S|-1$, the \minrangeh{d} problem
consists of assigning transmission ranges to the stations so as
to minimize the total power consumption, provided ...
more >>>
We study the problem of function inversion with preprocessing where, given a function $f : [N] \to [N]$ and a point $y$ in its image, the goal is to find an $x$ such that $f(x) = y$ using at most $T$ oracle queries to $f$ and $S$ bits of preprocessed ... more >>>
We show that there are families of polynomials having small depth-two arithmetic circuits that cannot be expressed by algebraic branching programs of width two. This clarifies the complexity of the problem of computing the product of a sequence of two-by-two matrices, which arises in several
settings.
We examine the power of Boolean functions with low L_1 norms in several
settings. In large part of the recent literature, the degree of a polynomial
which represents a Boolean function in some way was chosen to be the measure of the complexity of the Boolean function.
However, some functions ...
more >>>
In this paper we define and examine the power of the conditional-sampling oracle in the context of distribution-property testing. The conditional-sampling oracle for a discrete distribution $\mu$ takes as input a subset $S \subset [n]$ of the domain, and outputs a random sample $i \in S$ drawn according to $\mu$, ... more >>>
Almost the same types of restricted branching programs (or
binary decision diagrams BDDs) are considered in complexity
theory and in applications like hardware verification. These
models are read-once branching programs (free BDDs) and certain
types of oblivious branching programs (ordered and indexed BDDs
with k layers). The complexity of ...
more >>>
A language is \emph{selective} if there exists a
selection algorithm for it. Such an algorithm selects
from any two words one, which is an element of the
language whenever at least one of them is.
Restricting the complexity of selection algorithms
yields different \emph{selectivity classes} ...
more >>>
Proving explicit lower bounds on the size of algebraic formulas is a long-standing open problem in the area of algebraic complexity theory. Recent results in the area (e.g. a lower bound against constant-depth algebraic formulas due to Limaye, Srinivasan, and Tavenas (FOCS 2021)) have indicated a way forward for attacking ... more >>>
We prove exponential lower bounds on the size of homogeneous depth 4 arithmetic circuits computing an explicit polynomial in $VP$. Our results hold for the {\it Iterated Matrix Multiplication} polynomial - in particular we show that any homogeneous depth 4 circuit computing the $(1,1)$ entry in the product of $n$ ... more >>>
The purpose of this paper is to study the deterministic
{\em isolation} for certain structures in directed and undirected
planar graphs.
The motivation behind this work is a recent development on this topic. For example, \cite{btv07} isolate a directed path in planar graphs and
\cite{dkr08} isolate a perfect matching in ...
more >>>
The study of the computational power of randomized
computations is one of the central tasks of complexity theory. The
main goal of this paper is the comparison of the power of Las Vegas
computation and deterministic respectively nondeterministic
computation. We investigate the power of Las Vegas computation for ...
more >>>
The investigation of the computational power of randomized
computations is one of the central tasks of current complexity and
algorithm theory. This paper continues in the comparison of the computational
power of LasVegas computations with the computational power of deterministic
and nondeterministic ones. While for one-way ...
more >>>
We study the properties of the agnostic learning framework of Haussler (1992)and Kearns, Schapire and Sellie (1992). In particular, we address the question: is there any situation in which membership queries are useful in agnostic learning?
Our results show that the answer is negative for distribution-independent agnostic learning and positive ... more >>>
We qualitatively separate semi-honest secure computation of non-trivial secure-function evaluation (SFE) functionalities from existence of key-agreement protocols.
Technically, we show the existence of an oracle (namely, PKE-oracle) relative to which key-agreement protocols exist; but it is useless for semi-honest secure realization of symmetric 2-party (deterministic finite) SFE functionalities, i.e. any ...
more >>>
In the simultaneous message model, two parties holding $n$-bit integers
$x,y$ send messages to a third party, the {\it referee}, enabling
him to compute a boolean function $f(x,y)$. Buhrman et al
[BCWW01] proved the remarkable result that, when $f$ is the
equality function, the referee can solve this problem by ...
more >>>
In the random oracle model, the parties are given oracle access to a random member of
a (typically huge) function family, and are assumed to have unbounded computational power
(though they can only make a bounded number of oracle queries). This model provides powerful
properties that allow proving the security ...
more >>>
We define the notion of a randomized branching program in
the natural way similar to the definition of a randomized
circuit. We exhibit an explicit function $f_{n}$ for which
we prove that:
1) $f_{n}$ can be computed by polynomial size randomized
...
more >>>
We introduce a model of a {\em randomized branching program}
in a natural way similar to the definition of a randomized circuit.
We exhibit an explicit boolean function
$f_{n}:\{0,1\}^{n}\to\{0,1\}$ for which we prove that:
1) $f_{n}$ can be computed by a polynomial size randomized
...
more >>>
We give new upper and lower bounds on the power of several restricted classes of arbitrary-order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received significant attention in the literature on pseudorandomness for space-bounded computation.
Regular SOBPs of length $n$ and width $\lfloor w(n+1)/2\rfloor$ can exactly simulate general ... more >>>
We consider two of the most fundamental theorems in Cryptography. The first, due to Haastad et. al. [HILL99], is that pseudorandom generators can be constructed from any one-way function. The second due to Yao [Yao82] states that the existence of weak one-way functions (i.e. functions on which every efficient algorithm ... more >>>
We report progress on the \NL\ vs \UL\ problem.
\begin{itemize}
\item[-] We show unconditionally that the complexity class $\ReachFewL\subseteq\UL$. This improves on the earlier known upper bound $\ReachFewL \subseteq \FewL$.
\item[-] We investigate the complexity of min-uniqueness - a central
notion in studying the \NL\ vs \UL\ problem.
more >>>
Unambiguous hierarchies [NR93,LR94,NR98] are defined similarly to the polynomial hierarchy; however, all witnesses must be unique. These hierarchies have subtle differences in the mode of using oracles. We consider a "loose" unambiguous hierarchy $prUH_\bullet$ with relaxed definition of oracle access to promise problems. Namely, we allow to make queries that ... more >>>
Nisan and Szegedy (CC 1994) showed that any Boolean function $f:\{0,1\}^n\to\{0,1\}$ that depends on all its input variables, when represented as a real-valued multivariate polynomial $P(x_1,\ldots,x_n)$, has degree at least $\log n - O(\log \log n)$. This was improved to a tight $(\log n - O(1))$ bound by Chiarelli, Hatami ... more >>>
We study the probabilistic degree over reals of the OR function on $n$ variables. For an error parameter $\epsilon$ in (0,1/3), the $\epsilon$-error probabilistic degree of any Boolean function $f$ over reals is the smallest non-negative integer $d$ such that the following holds: there exists a distribution $D$ of polynomials ... more >>>
The probabilistic degree of a Boolean function $f:\{0,1\}^n\rightarrow \{0,1\}$ is defined to be the smallest $d$ such that there is a random polynomial $\mathbf{P}$ of degree at most $d$ that agrees with $f$ at each point with high probability. Introduced by Razborov (1987), upper and lower bounds on probabilistic degrees ... more >>>
Let $g$ be a map defined as the Nisan-Wigderson generator
but based on an $NP \cap coNP$-function $f$. Any string $b$ outside the range of
$g$ determines a propositional tautology $\tau(g)_b$ expressing this
fact. Razborov \cite{Raz03} has conjectured that if $f$ is hard on average for
P/poly then these ...
more >>>
We study the proper learnability of axis parallel concept classes
in the PAC learning model and in the exact learning model with
membership and equivalence queries. These classes include union of boxes,
DNF, decision trees and multivariate polynomials.
For the {\it constant} dimensional axis parallel concepts $C$
we ...
more >>>
A theorem of Green, Tao, and Ziegler can be stated as follows: if $R$ is a pseudorandom distribution, and $D$ is a dense distribution of $R,$ then $D$ can be modeled as a distribution $M$ which is dense in uniform distribution such that $D$ and $M$ are indistinguishable. The reduction ... more >>>
This paper introduces a framework for quantum exact learning via queries, the so-called quantum protocol. It is shown that usual protocols in the classical learning setting have quantum counterparts. A combinatorial notion, the general halving dimension, is also introduced. Given a quantum protocol and a target concept class, the general ... more >>>
Propositional Satisfiability (SAT) solvers are routinely used for
solving many function problems.
A natural question that has seldom been addressed is: what is the
best worst-case number of calls to a SAT solver for solving some
target function problem?
This paper develops tighter upper bounds on the query complexity of
more >>>
We consider the query complexity of testing local graph properties in the bounded-degree graph model.
A local property is defined in terms of forbidden subgraphs that are augmented by degree information, where the latter account also for neighbors that are not in the subgraph.
Indeed, this formulation yields a generalized ...
more >>>
We study the Range Avoidance Problem (Avoid), in which the input is an expanding circuit $C : \{0,1\}^n \to \{0,1\}^{n+1}$, and the goal is to find a $y \in \{0,1\}^{n+1}$ that is not in the image of $C$. We are interested in the randomized complexity of this problem, i.e., in ... more >>>
We initiate a general study of the randomness complexity of
property testing, aimed at reducing the randomness complexity of
testers without (significantly) increasing their query complexity.
One concrete motovation for this study is provided by the
observation that the product of the randomness and query complexity
of a tester determine ...
more >>>
We consider the range avoidance problem (called Avoid): given the description of a circuit $C:\{0, 1\}^n \to \{0, 1\}^\ell$ (where $\ell > n$), find a string $y\in\{0, 1\}^\ell$ that is not in the range of $C$. This problem is complete for the class APEPP that corresponds to explicit constructions of ... more >>>
We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions $f$, it is conjectured that $\mathrm{rdeg}(f)$ is polynomially related to $\mathrm{deg}(f)$, where $\mathrm{deg}(f)$ is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least $\mathrm{deg}(f)/2$ and ... more >>>
Given linear two codes R,C, their tensor product $R \otimes C$
consists of all matrices whose rows are codewords of R and whose
columns are codewords of C. The product $R \otimes C$ is said to
be robust if for every matrix M that is far from $R \otimes C$
more >>>
We say that a polynomial $f(x_1,\ldots,x_n)$ is {\em indecomposable} if it cannot be written as a product of two polynomials that are defined over disjoint sets of variables. The {\em polynomial decomposition} problem is defined to be the task of finding the indecomposable factors of a given polynomial. Note that ... more >>>
\emph{Statistical Zero-knowledge proofs} (Goldwasser, Micali and Rackoff, SICOMP 1989) allow a computationally-unbounded server to convince a computationally-limited client that an input $x$ is in a language $\Pi$ without revealing any additional information about $x$ that the client cannot compute by herself. \emph{Randomized encoding} (RE) of functions (Ishai and Kushilevitz, FOCS ... more >>>
We show that tree-like OBDD proofs of unsatisfiability require an exponential increase ($s \mapsto 2^{s^{\Omega(1)}}$) in proof size to simulate unrestricted resolution, and that unrestricted OBDD proofs of unsatisfiability require an almost-exponential increase ($s \mapsto 2^{ 2^{\left( \log s \right)^{\Omega(1)}}}$) in proof size to simulate $\Res{O(\log n)}$. The ``OBDD proof ... more >>>
The last decade has seen a revival of interest in pebble games in the
context of proof complexity. Pebbling has proven to be a useful tool
for studying resolution-based proof systems when comparing the
strength of different subsystems, showing bounds on proof space, and
establishing size-space trade-offs. The typical approach ...
more >>>
A locally decodable code (LDC) is an error correcting code that allows for recovery of any desired bit in the message based on a constant number of randomly selected bits in the possibly corrupted codeword.
A relaxed LDC requires correct recovery only in case of actual codewords, while requiring that ...
more >>>
We study the complexity of the isomorphism and automorphism problems for finite rings with unity.
We show that both integer factorization and graph isomorphism reduce to the problem of counting
automorphisms of rings. The problem is shown to be in the complexity class $\AM \cap co\AM$
and hence ...
more >>>
Ben-Sasson and Sudan in~\cite{BS04} asked if the following test
is robust for the tensor product of a code with another code--
pick a row (or column) at random and check if the received word restricted to the picked row (or column) belongs to the corresponding code. Valiant showed that ...
more >>>
We prove a version of "Reversed Newman Theorem" in context of information complexity: every private-coin communication protocol with information complexity $I$ and communication complexity $C$ can be replaced by public-coin protocol with the same behavior so that it's information complexity does not exceed $O\left(\sqrt{IC}\right)$. This result holds for unbounded-round communication ... more >>>
Two parties wish to carry out certain distributed computational tasks, and they are given access to a source of correlated random bits.
It allows the parties to act in a correlated manner, which can be quite useful.
But what happens if the shared randomness is not perfect?
In this work, ... more >>>
A neural network is said to be nonoverlapping if there is at most one
edge outgoing from each node. We investigate the number of examples
that a learning algorithm needs when using nonoverlapping neural
networks as hypotheses. We derive bounds for this sample complexity
in terms of the Vapnik-Chervonenkis dimension. ...
more >>>
We study networks of spiking neurons that use the timing of pulses
to encode information. Nonlinear interactions model the spatial
groupings of synapses on the dendrites and describe the computations
performed at local branches. We analyze the question of how many
examples these networks must ...
more >>>
We give a simple proof for the sample complexity bound $O~(1/\epsilon^4)$ of absolute approximation of MAX-CUT. The proof depends on a new analysis method for linear programs (LPs) underlying MAX-CUT which could be also of independent interest.
more >>>Boneh and Venkatesan have recently proposed a polynomial time
algorithm for recovering a ``hidden'' element $\alpha$ of a
finite field $\F_p$ of $p$ elements from rather short
strings of the most significant bits of the remainder
mo\-du\-lo $p$ of $\alpha t$ for several values of $t$ selected
uniformly at ...
more >>>
Assuming the inractability of factoring, we show that the
output of the exponentiation modulo a composite function
$f_{N,g}(x)=g^x\bmod N$ (where $N=P\cdot Q$) is pseudorandom,
even when its input is restricted to be half the size.
This result is equivalent to the simultaneous hardness of
the ...
more >>>
Assuming the inractability of factoring, we show that
the output of the exponentiation modulo a composite function
$f_{N,g}(x)=g^x\bmod N$ (where $N=P\cdot Q$) is pseudorandom,
even when its input is restricted to be half the size.
This result is equivalent to the simultaneous hardness of the upper
half of the bits ...
more >>>
In this paper we investigate the security of the server aided
RSA protocols RSA-S1 and RSA-S1M proposed by Matsumoto, Kato and Imai
resp. Matsumoto, Imai, Laih and Yen. We prove lower bounds for the
complexity of attacks on these protocols and show that the bounds are
sharp by describing attacks ...
more >>>
The sensitivity of a Boolean function $f:\{0,1\}^n \to \{0,1\}$ is the maximal number of neighbors a point in the Boolean hypercube has with different $f$-value. Roughly speaking, the block sensitivity allows to flip a set of bits (called a block) rather than just one bit, in order to change the ... more >>>
Various combinatorial/algebraic parameters are used to quantify the complexity of a Boolean function. Among them, sensitivity is one of the simplest and block sensitivity is one of the most useful. Nisan (1989) and Nisan and Szegedy (1991) showed that block sensitivity and several other parameters, such as certificate complexity, decision ... more >>>
In this paper we construct a cyclically invariant Boolean function
whose sensitivity is $\Theta(n^{1/3})$. This result answers two
previously published questions. Tur\'an (1984) asked if any
Boolean function, invariant under some transitive group of
permutations, has sensitivity $\Omega(\sqrt{n})$. Kenyon and Kutin
(2004) asked whether for a ``nice'' function the product ...
more >>>
We propose that multi-linear functions of relatively low degree
over GF(2) may be good candidates for obtaining exponential
lower bounds on the size of constant-depth Boolean circuits
(computing explicit functions).
Specifically, we propose to move gradually from linear functions
to multilinear ones, and conjecture that, for any $t\geq2$,
more >>>
Let $r \geq 1$ be an integer. Let us call a polynomial $f(x_1, x_2,\ldots, x_N) \in \mathbb{F}[\mathbf{x}]$ as a multi-$r$-ic polynomial if the degree of $f$ with respect to any variable is at most $r$ (this generalizes the notion of multilinear polynomials). We investigate arithmetic circuits in which the output ... more >>>
Linear Programs are abundant in practice, and tremendous effort has been put into designing efficient algorithms for such problems, resulting with very efficient (polynomial time) algorithms. A fundamental question is: what is the space complexity of Linear Programming?
It is widely believed that (even approximating) Linear Programming requires a large ... more >>>
Parameterized complexity theory measures the complexity of computational problems predominantly in terms of their parameterized time complexity. The purpose of the present paper is to demonstrate that the study of parameterized space complexity can give new insights into the complexity of well-studied parameterized problems like the feedback vertex set problem. ... more >>>
An $\epsilon$-test for a property $P$ of functions from
${\cal D}=\{1,\ldots,d\}$ to the positive integers is a randomized
algorithm, which makes queries on the value of an input function at
specified locations, and distinguishes with high probability between the
case of the function satisfying $P$, and the case that it ...
more >>>
The propositional proof system Sherali-Adams (SA) has polynomial-size proofs of the pigeonhole principle (PHP). Similarly, the Nullstellensatz (NS) proof system has polynomial size proofs of the bijective (i.e. both functional and onto) pigeonhole principle (ofPHP). We characterize the strength of these algebraic proof systems in terms of Boolean proof systems ... more >>>
In this paper we prove results regarding Boolean functions with small spectral norm (the spectral norm of $f$ is $\|\hat{f}\|_1=\sum_{\alpha}|\hat{f}(\alpha)|$). Specifically, we prove the following results for functions $f:\{0,1\}^n\to \{0,1\}$ with $\|\hat{f}\|_1=A$.
1. There is a subspace $V$ of co-dimension at most $A^2$ such that $f|_V$ is constant.
2. ... more >>>
In this paper we study the structure of polynomials of degree three and four that have high bias or high Gowers norm, over arbitrary prime fields. In particular we obtain the following results. 1. We give a canonical representation for degree three or four polynomials that have a significant bias ... more >>>
Motivated by the goal of showing stronger structural results about the complexity of learning, we study the learnability of strong concept classes beyond P/poly, such as PSPACE/poly and EXP/poly. We show the following:
1. (Unconditional Lower Bounds for Learning) Building on [KKO13], we prove unconditionally that BPE/poly cannot be weakly ... more >>>
In this work we extend the study of solution graphs and prove that for boolean formulas in a class called CPSS, all connected components are partial cubes of small dimension, a statement which was proved only for some cases in [Schwerdtfeger 2013]. In contrast, we show that general Schaefer formulas ... more >>>
We investigate the computational complexity of finding an element of
a permutation group~$H\subseteq S_n$ with a minimal distance to a
given~$\pi\in S_n$, for different metrics on~$S_n$. We assume
that~$H$ is given by a set of generators, such that the problem
cannot be solved in polynomial time ...
more >>>
For a multilinear polynomial $p(x_1,...x_n)$, over the reals, the $L1$-influence is defined to be $\sum_{i=1}^n E_x\left[\frac{|p(x)-p(x^i)|}{2} \right]$, where $x^i$ is $x$ with $i$-th bit swapped. If $p$ maps $\{-1,1\}^n$ to $[-1,1]$, we prove that the $L1$-influence of $p$ is upper bounded by a function of its degree (and independent of ... more >>>
The sum of square roots problem over integers is the task of deciding the sign of a nonzero sum, $S = \Sigma_{i=1}^{n}{\delta_i}$ . \sqrt{$a_i$}, where $\delta_i \in$ { +1, -1} and $a_i$'s are positive integers that are upper bounded by $N$ (say). A fundamental open question in numerical analysis and ... more >>>
In a Nisan-Wigderson design polynomial (in short, a design polynomial), the gcd of every pair of monomials has a low degree. A useful example of such a polynomial is the following:
$$\text{NW}_{d,k}(\mathbf{x}) = \sum_{h \in \mathbb{F}_d[z], ~\deg(h) \leq k}{~~~~\prod_{i = 0}^{d-1}{x_{i, h(i)}}},$$
where $d$ is a prime, $\mathbb{F}_d$ is the ...
more >>>
In this work we study the testability of a family of graph partition properties that generalizes a family previously studied by Goldreich, Goldwasser, and Ron (Journal of the ACM, 1998). While the family studied by Goldreich et al. includes a variety of natural properties, such as k-colorability and containing a ... more >>>
Valiant has proposed a new theory of algorithmic
computation based on perfect matchings and the Pfaffian.
We study the properties of {\it matchgates}---the basic
building blocks in this new theory. We give a set of
algebraic identities
which completely characterize these objects in terms of
the ...
more >>>
We show that a pseudo-random number generator,
introduced recently by M. Naor and O. Reingold,
possess one more attractive and useful property.
Namely, it is proved that for almost all values of parameters it
produces a uniformly distributed sequence.
The proof is based on some recent bounds of exponential
more >>>
We show that there is a constant $k$ such that Buss's intuitionistic theory $\mathbf{IS}^1_2$ does not prove that SAT requires co-nondeterministic circuits of size at least $n^k$. To our knowledge, this is the first unconditional unprovability result in bounded arithmetic in the context of worst-case fixed-polynomial size circuit lower bounds. ... more >>>
Recently, an extension of the standard data stream model has been introduced in which an algorithm can create and manipulate multiple read/write streams in addition to its input data stream. Like the data stream model, the most important parameter for this model is the amount of internal memory used by ... more >>>
A polynomial $P\in F[x_1,\ldots,x_n]$ is said to be symmetric if it is invariant under any permutation of its input variables. The study of symmetric polynomials is a classical topic in mathematics, specifically in algebraic combinatorics and representation theory. More recently, they have been studied in several works in computer science, ... more >>>
In this paper we initiate the study of width in semi-algebraic proof systems
and various cut-based procedures in integer programming. We focus on two
important systems: Gomory-Chv\'atal cutting planes and
Lov\'asz-Schrijver lift-and-project procedures. We develop general methods for
proving width lower bounds and apply them to random $k$-CNFs and several ...
more >>>
We show that over the field of complex numbers, every homogeneous polynomial of degree $d$ can be approximated (in the border complexity sense) by a depth-$3$ arithmetic circuit of top fan-in at most $d+1$. This is quite surprising since there exist homogeneous polynomials $P$ on $n$ variables of degree $2$, ... more >>>
We show that any nondeterministic read-once branching program that computes a satisfiable Tseitin formula based on an $n\times n$ grid graph has size at least $2^{\Omega(n)}$. Then using the Excluded Grid Theorem by Robertson and Seymour we show that for arbitrary graph $G(V,E)$ any nondeterministic read-once branching program that computes ... more >>>
We consider the complexity of determining the winner of a finite, two-level poset game.
This is a natural question, as it has been shown recently that determining the winner of a finite, three-level poset game is PSPACE-complete.
We give a simple formula allowing one to compute the status ...
more >>>
We propose an information-theoretic approach to proving lower
bounds on the size of branching programs. The argument is based on
Kraft-McMillan type inequalities for the average amount of
uncertainty about (or entropy of) a given input during the various
stages of computation. The uncertainty is measured by the average
more >>>
Several calculi for quantified Boolean formulas (QBFs) exist, but
relations between them are not yet fully understood.
This paper defines a novel calculus, which is resolution-based and
enables unification of the principal existing resolution-based QBF
calculi, namely Q-resolution, long-distance Q-resolution and the expansion-based
calculus ...
more >>>
Vanishing sums of roots of unity can be seen as a natural generalization of knapsack from Boolean variables to variables taking values over the roots of unity. We show that these sums are hard to prove for polynomial calculus and for sum-of-squares, both in terms of degree and size.
more >>>Defining a feasible notion of space over the Blum-Shub-Smale (BSS) model of algebraic computation is a long standing open problem. In an attempt to define a right notion of space complexity for the BSS model, Naurois [CiE, 2007] introduced the notion of weak-space. We investigate the weak-space bounded computations and ... more >>>
A PAC learning model involves two worst-case requirements: a learner must learn all functions in a class on all example distributions. However, basing the hardness of learning on NP-hardness has remained a key challenge for decades. In fact, recent progress in computational complexity suggests the possibility that a weaker assumption ... more >>>
We show that if an NP-complete problem has a non-adaptive
self-corrector with respect to a samplable distribution then
coNP is contained in NP/poly and the polynomial
hierarchy collapses to the third level. Feigenbaum and
Fortnow (SICOMP 22:994-1005, 1993) show the same conclusion
under the stronger assumption that an
more >>>
We show that for a graph G it is NP-hard to decide whether its independence number alpha(G) equals its clique partition number ~chi(G) even when some minimum clique partition of G is given. This implies that any alpha(G)-upper bound provably better than ~chi(G) is NP-hard to compute.
To establish this ... more >>>
We investigate the implications of noise in the equivalence query
model. Besides some results for general target and hypotheses
classes, we prove bounds on the learning complexity of d-dimensional
discretized rectangles in the case where only rectangles are allowed
as hypotheses.
Our noise model assumes ...
more >>>
We investigate a variant of the on-line learning model for classes
of {0,1}-valued functions (concepts) in which the labels of a certain
amount of the input instances are corrupted by adversarial noise.
We propose an extension of a general learning strategy, known as
"Closure Algorithm", to this noise ...
more >>>
We consider the problem of scheduling permanent jobs on related machines
in an on-line fashion. We design a new algorithm that achieves the
competitive ratio of $3+\sqrt{8}\approx 5.828$ for the deterministic
version, and $3.31/\ln 2.155 \approx 4.311$ for its randomized variant,
improving the previous competitive ratios ...
more >>>
We study the one-clean-qubit model of quantum communication where one qubit is in a pure state and all other qubits are maximally mixed. We demonstrate a partial function that has a quantum protocol of cost $O(\log N)$ in this model, however, every interactive randomized protocol has cost $\Omega(\sqrt{N})$, settling a ... more >>>
Assume that A, B are finite families of n-element sets.
We prove that there is an element that simultaneously
belongs to at least |A|/2n sets
in A and to at least |B|/2n sets in B. We use this result to prove
that for any inconsistent DNF's F,G with OR ...
more >>>
We consider computation in the presence of closed timelike curves (CTCs), as proposed by Deutsch. We focus on the case in which the CTCs carry classical bits (as opposed to qubits). Previously, Aaronson and Watrous showed that computation with polynomially many CTC bits is equivalent in power to PSPACE. On ... more >>>
Condon and Lipton (FOCS 1989) showed that the class of languages having a space-bounded interactive proof system (IPS) is a proper subset of decidable languages, where the verifier is a probabilistic Turing machine. In this paper, we show that if we use architecturally restricted verifiers instead of restricting the working ... more >>>
A monotone planar circuit (MPC) is a Boolean circuit that can be
embedded in a plane, and that has only AND and OR
gates. Yang showed that the one-input-face
monotone planar circuit value problem (MPCVP) is in NC^2, and
Limaye et. al. improved the bound to ...
more >>>
We consider an instance of the following problem: Parties $P_1,..., P_k$ each receive an input $x_i$, and a coordinator (distinct from each of these parties) wishes to compute $f(x_1,..., x_k)$ for some predicate $f$. We are interested in one-round protocols where each party sends a single message to the coordinator; ... more >>>
Assume that Alice has a binary string $x$ and Bob a binary string $y$, both of length $n$. Their goal is to output 0, if $x$ and $y$ are at least $L$-close in Hamming distance, and output 1, if $x$ and $y$ are at least $U$-far in Hamming distance, where ... more >>>
We consider the query complexity of three versions of the problem of testing monomials and affine (and linear) subspaces with one-sided error, and obtain the following results:
\begin{itemize}
\item The general problem, in which the arity of the monomial (resp., co-dimension of the subspace) is not specified, has ...
more >>>
For a size parameter $s\colon\mathbb{N}\to\mathbb{N}$, the Minimum Circuit Size Problem (denoted by ${\rm MCSP}[s(n)]$) is the problem of deciding whether the minimum circuit size of a given function $f \colon \{0,1\}^n \to \{0,1\}$ (represented by a string of length $N := 2^n$) is at most a threshold $s(n)$. A ... more >>>
Let $f$ be a Boolean function on $n$-bits, and $\mathsf{IP}$ the inner-product function on $2b$ bits. Let $f^{\mathsf{IP}}:=f \circ \mathsf{IP}^n$ be the two party function obtained by composing $f$ with $\mathsf{IP}$. In this work we bound the one-way communication complexity of $f^{\IP}$ in terms of the non-adaptive query complexity of ... more >>>
We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. Let $IP$ denote Inner Product on ... more >>>
Boolean function $F(x,y)$ for $x,y \in \{0,1\}^n$ is an XOR function if $F(x,y) = f(x\oplus y)$ for some function $f$ on $n$ input bits, where $\oplus$ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing Fourier analytic technique. For total XOR functions it is known ... more >>>
We study deterministic one-way communication complexity
of functions with Hankel communication matrices.
Some structural properties of such matrices are established
and applied to the one-way two-party communication complexity
of symmetric Boolean functions.
It is shown that the number of required communication bits
does not depend on ...
more >>>
Consider the recently introduced notion of \emph{probabilistic
time-bounded Kolmogorov Complexity}, pK^t (Goldberg et al,
CCC'22), and let MpK^tP denote the language of pairs (x,k) such that pK^t(x) \leq k.
We show the equivalence of the following:
- MpK^{poly}P is (mildly) hard-on-average w.r.t. \emph{any} samplable
distribution $\D$;
- ...
more >>>
One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence ... more >>>
We introduce $\mathrm{pKt}$ complexity, a new notion of time-bounded Kolmogorov complexity that can be seen as a probabilistic analogue of Levin's $\mathrm{Kt}$ complexity. Using $\mathrm{pKt}$ complexity, we upgrade two recent frameworks that characterize one-way functions ($\mathrm{OWFs}$) via symmetry of information and meta-complexity, respectively. Among other contributions, we establish the following ... more >>>
We study the Isomorphism Conjecture proposed by Berman and Hartmanis.
It states that all sets complete for NP under polynomial-time many-one
reductions are P-isomorphic to each other. From previous research
it has been widely believed that all NP-complete sets are reducible
each other by one-to-one and length-increasing polynomial-time
reductions, but ...
more >>>
The fundamental theorem of Goldreich, Micali, and Wigderson (J. ACM 1991) shows that the existence of a one-way function is sufficient for constructing computational zero knowledge ($\mathrm{CZK}$) proofs for all languages in $\mathrm{NP}$. We prove its converse, thereby establishing characterizations of one-way functions based on the worst-case complexities of ... more >>>
In this paper we study the one-way multi-party communication model,
in which every party speaks exactly once in its turn. For every
fixed $k$, we prove a tight lower bound of
$\Omega{n^{1/(k-1)}}$ on the probabilistic communication
complexity of pointer jumping in a $k$-layered tree, where the
pointers of the $i$-th ...
more >>>
The main objective of this survey is to present the important theoretical and experimental results contributed till date in the area of online algorithms for the self organizing sequential search problem, also popularly known as the List Update Problem(LUP) in a chronological way. The survey includes competitiveness results of deterministic ... more >>>
In this paper we study a dynamic version of capacity maximization in the physical model of wireless communication. In our model, requests for connections between pairs of points in Euclidean space of constant dimension $d$ arrive iteratively over time. When a new request arrives, an online algorithm needs to decide ... more >>>
A natural model of a source of randomness consists of a long stream of symbols $X = X_1\circ\ldots\circ X_t$, with some guarantee on the entropy of $X_i$ conditioned on the outcome of the prefix $x_1,\dots,x_{i-1}$. We study unpredictable sources, a generalization of the almost Chor--Goldreich (CG) sources considered in [DMOZ23]. ... more >>>
We establish a relationship between the online mistake-bound model of learning and resource-bounded dimension. This connection is combined with the Winnow algorithm to obtain new results about the density of hard sets under adaptive reductions. This improves previous work of Fu (1995) and Lutz and Zhao (2000), and solves one ... more >>>
We briefly discuss a few open problems in the study of various models of testing graph properties, focusing on the query complexity of the various tasks. In the dense graph model, we discuss several open problems, including:
* Determining the complexity of testing triangle-freeness.
* Characterizing the class of properties ...
more >>>
We provide compelling evidence for the potential of hardness-vs.-randomness approaches to make progress on the long-standing problem of derandomizing space-bounded computation.
Our first contribution is a derandomization of bounded-space machines from hardness assumptions for classes of uniform deterministic algorithms, for which strong (but non-matching) lower bounds can be unconditionally proved. ... more >>>
Decision trees are a very general computation model.
Here the problem is to identify a Boolean function $f$ out of a given
set of Boolean functions $F$ by asking for the value of $f$ at adaptively
chosen inputs.
For classes $F$ consisting of functions which may be obtained from one
more >>>
The problem of monotonicity testing of the boolean hypercube is a classic well-studied, yet unsolved
question in property testing. We are given query access to $f:\{0,1\}^n \mapsto R$
(for some ordered range $R$). The boolean hypercube ${\cal B}^n$ has a natural partial order, denoted by $\prec$ (defined by the product ...
more >>>
The threshold degree of a function
$f\colon\{0,1\}^n\to\{-1,+1\}$ is the least degree of a
real polynomial $p$ with $f(x)\equiv\mathrm{sgn}\; p(x).$ We
prove that the intersection of two halfspaces on
$\{0,1\}^n$ has threshold degree $\Omega(n),$ which
matches the trivial upper bound and completely answers
a question due to Klivans (2002). The best ...
more >>>
We prove an optimal bound on the Shannon function
$L(n,m,\epsilon)$ which describes the trade-off between the
circuit-size complexity and the degree of approximation; that is
$$L(n,m,\epsilon)\ =\
\Theta\left(\frac{m\epsilon^2}{\log(2 + m\epsilon^2)}\right)+O(n).$$
Our bound applies to any partial boolean function
and any ...
more >>>
The coding theorem for Kolmogorov complexity states that any string sampled from a computable distribution has a description length close to its information content. A coding theorem for resource-bounded Kolmogorov complexity is the key to obtaining fundamental results in average-case complexity, yet whether any samplable distribution admits a coding theorem ... more >>>
Error correction and message authentication are well studied in the literature, and various efficient solutions have been suggested and analyzed. This is however not the case for data streams in which the message is very long, possibly infinite, and not known in advance to the sender. Trivial solutions for error-correcting ... more >>>
The classical coding theorem in Kolmogorov complexity states that if an $n$-bit string $x$ is sampled with probability $\delta$ by an algorithm with prefix-free domain then K$(x) \leq \log(1/\delta) + O(1)$. In a recent work, Lu and Oliveira [LO21] established an unconditional time-bounded version of this result, by showing that ... more >>>
Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's Unique Games Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best approximation ratio is attained by a certain simple semidefinite programming and a rounding scheme for it.
In this paper, we show that a ...
more >>>
We present a polynomial time dynamic programming algorithm for optimal partitions in the shortest path metric induced by a tree. This resolves, among other things, the exact complexity status of the optimal partition problems in one dimensional geometric metric settings. Our method of solution could be also of independent interest ... more >>>
In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length $n$ and width $w$ read-once branching programs with seed length $O(\log n\cdot \log(nw)+\log n\cdot\log(1/\varepsilon))$ and error $\varepsilon$. It remains a central question to reduce the seed length to $O(\log (nw/\varepsilon))$, which would prove that $\mathbf{BPL}=\mathbf{L}$. However, there has ... more >>>
We study the error resilience of the message exchange task: Two parties, each holding a private input, want to exchange their inputs. However, the channel connecting them is governed by an adversary that may corrupt a constant fraction of the transmissions. What is the maximum fraction of corruptions that still ... more >>>
We consider the problem of finding a monomial (or a term) that maximizes the agreement rate with a given set of examples over the Boolean hypercube. The problem originates in learning and is referred to as {\em agnostic learning} of monomials. Finding a monomial with the highest agreement rate was ... more >>>
The existence of optimal algorithms is not known for any decision problem in NP$\setminus$P. We consider the problem of testing the membership in the image of an injective function. We construct optimal heuristic algorithms for this problem in both randomized and deterministic settings (a heuristic algorithm can err on a ... more >>>
We consider the problem of constructing explicit Hitting sets for Combinatorial Shapes, a class of statistical tests first studied by Gopalan, Meka, Reingold, and Zuckerman (STOC 2011). These generalize many well-studied classes of tests, including symmetric functions and combinatorial rectangles. Generalizing results of Linial, Luby, Saks, and Zuckerman (Combinatorica 1997) ... more >>>
A seminal result of H\r{a}stad [J. ACM, 48(4):798–859, 2001] shows that it is NP-hard to find an assignment that satisfies $\frac{1}{|G|}+\varepsilon$ fraction of the constraints of a given $k$-LIN instance over an abelian group, even if there is an assignment that satisfies $(1-\varepsilon)$ fraction of the constraints, for any constant ... more >>>
In this paper we show a reduction from the Unique Games problem to the problem of approximating MAX-CUT to within a factor of $\GW + \eps$, for all $\eps > 0$; here $\GW \approx .878567$ denotes the approximation ratio achieved by the Goemans-Williamson algorithm~\cite{GW95}. This implies that if the Unique ... more >>>
The factor graph of an instance of a constraint satisfaction problem (CSP) is the bipartite graph indicating which variables appear in each constraint. An instance of the CSP is given by the factor graph together with a list of which predicate is applied for each constraint. We establish that many ... more >>>
Interactive coding, pioneered by Schulman (FOCS 1992, STOC 1993), is concerned with making communication protocols resilient to adversarial noise. The canonical model allows the adversary to alter a small constant fraction of symbols, chosen at the adversary's discretion, as they pass through the communication channel. Braverman, Gelles, Mao, and Ostrovsky ... more >>>
We show optimal lower bounds for spanning forest computation in two different models:
* One wants a data structure for fully dynamic spanning forest in which updates can insert or delete edges amongst a base set of $n$ vertices. The sole allowed query asks for a spanning forest, which the ... more >>>
We study lower bounds for Locality Sensitive Hashing (LSH) in the strongest setting: point sets in $\{0,1\}^d$ under the Hamming distance. Recall that $\mathcal{H}$ is said to be an $(r, cr, p, q)$-sensitive hash family if all pairs $x,y \in \{0,1\}^d$ with dist$(x,y) \leq r$ have probability at least $p$ ... more >>>
The seminal work of Ahn, Guha, and McGregor in 2012 introduced the graph sketching technique and used it to present the first streaming algorithms for various graph problems over dynamic streams with both insertions and deletions of edges. This includes algorithms for cut sparsification, spanners, matchings, and minimum spanning trees ... more >>>
Many Boolean functions have short representations by OBDDs (ordered
binary decision diagrams) if appropriate variable orderings are used.
For tree-like circuits, which may contain EXOR-gates, it is proved
that some depth first traversal leads to an optimal variable ordering.
Moreover, an optimal variable ordering and the resulting OBDD
can ...
more >>>
We investigate the connection between optimal propositional
proof systems and complete languages for promise classes.
We prove that an optimal propositional proof system exists
if and only if there exists a propositional proof system
in which every promise class with the test set in co-NP
...
more >>>
A polynomial time computable function $h:\Sigma^*\to\Sigma^*$ whose range
is the set of tautologies in Propositional Logic (TAUT), is called
a proof system. Cook and Reckhow defined this concept
and in order to compare the relative strenth of different proof systems,
they considered the notion ...
more >>>
We construct explicit pseudorandom generators that fool $n$-variate polynomials of degree at most $d$ over a finite field $\mathbb{F}_q$. The seed length of our generators is $O(d \log n + \log q)$, over fields of size exponential in $d$ and characteristic at least $d(d-1)+1$. Previous constructions such as Bogdanov's (STOC ... more >>>
In the Minmax Set Cover Reconfiguration problem, given a set system $\mathcal{F}$ over a universe and its two covers $\mathcal{C}^\mathrm{start}$ and $\mathcal{C}^\mathrm{goal}$ of size $k$, we wish to transform $\mathcal{C}^\mathrm{start}$ into $\mathcal{C}^\mathrm{goal}$ by repeatedly adding or removing a single set of $\mathcal{F}$ while covering the universe in any intermediate state. ... more >>>
Estimating quantiles is one of the foundational problems of data sketching. Given $n$ elements $x_1, x_2, \dots, x_n$ from some universe of size $U$ arriving in a data stream, a quantile sketch estimates the rank of any element with additive error at most $\varepsilon n$. A low-space algorithm solving this ... more >>>
We construct a new list-decodable family of asymptotically good algebraic-geometric (AG) codes over fixed alphabets. The function fields underlying these codes are constructed using class field theory, specifically Drinfeld modules of rank $1$, and designed to have an automorphism of large order that is used to ``fold" the AG code. ... more >>>
We construct two classes of algebraic code families which are efficiently list decodable with small output list size from a fraction $1-R-\epsilon$ of adversarial errors where $R$ is the rate of the code, for any desired positive constant $\epsilon$. The alphabet size depends only on $\epsilon$ and is nearly-optimal.
The ... more >>>
We show an efficient method for converting a logic circuit of gates with fan-out 1 into an equivalent circuit that works even if some fraction of its gates are short-circuited, i.e., their output is short-circuited to one of their inputs. Our conversion can be applied to any circuit with fan-in ... more >>>
It is well known that the optimal solution for
searching in
a finite total order set is the binary search.
In the binary search we
divide the set into two ``halves'', by querying the middle
element, and continue the search on the suitable half.
What is the equivalent of binary ...
more >>>
This work considers the problem of approximating fixed predicate constraint satisfaction problems (MAX k-CSP(P)). We show that if the set of assignments accepted by $P$ contains the support of a balanced pairwise independent distribution over the domain of the inputs, then such a problem on $n$ variables cannot be approximated ... more >>>
We study the problem of testing discrete distributions with a focus on the high probability regime.
Specifically, given samples from one or more discrete distributions, a property $\mathcal{P}$, and
parameters $0< \epsilon, \delta <1$, we want to distinguish {\em with probability at least $1-\delta$}
whether these distributions satisfy $\mathcal{P}$ ...
more >>>
We consider the problem of testing if a given function $f : \F_q^n \rightarrow \F_q$ is close to a $n$-variate degree $d$ polynomial over the finite field $\F_q$ of $q$ elements. The natural, low-query, test for this property would be to pick the smallest dimension $t = t_{q,d}\approx d/q$ such ... more >>>
We consider the problem of testing if a given function
$f : \F_2^n \rightarrow \F_2$ is close to any degree $d$ polynomial
in $n$ variables, also known as the Reed-Muller testing problem.
Alon et al.~\cite{AKKLR} proposed and analyzed a natural
$2^{d+1}$-query test for this property and showed that it accepts
more >>>
We prove upper and lower bounds for computing Merkle tree
traversals, and display optimal trade-offs between time
and space complexity of that problem.
We study the problem of testing unateness of functions $f:\{0,1\}^d \to \mathbb{R}.$ We give a $O(\frac{d}{\epsilon} \cdot \log\frac{d}{\epsilon})$-query nonadaptive tester and a $O(\frac{d}{\epsilon})$-query adaptive tester and show that both testers are optimal for a fixed distance parameter $\epsilon$. Previously known unateness testers worked only for Boolean functions, and their query ... more >>>
Estimating the second frequency moment of a stream up to $(1\pm\varepsilon)$ multiplicative error requires at most $O(\log n / \varepsilon^2)$ bits of space, due to a seminal result of Alon, Matias, and Szegedy. It is also known that at least $\Omega(\log n + 1/\varepsilon^{2})$ space is needed.
We prove an ...
more >>>
We study the relation between streaming algorithms and linear sketching algorithms, in the context of binary updates. We show that for inputs in $n$ dimensions,
the existence of efficient streaming algorithms which can process $\Omega(n^2)$ updates implies efficient linear sketching algorithms with comparable cost.
This improves upon the previous work ...
more >>>
We give a complete answer to the following basic question: ``What is the maximal fraction of deletions or insertions tolerable by $q$-ary list-decodable codes with non-vanishing information rate?''
This question has been open even for binary codes, including the restriction to the binary insertion-only setting, where the best known results ... more >>>
It is shown that the total wire length of layouts of a
balanced binary tree on a 2-dimensional grid can be reduced by 33%
if one does not choose the obvious ``symmetric'' layout strategy.
Furthermore it is shown that the more efficient layout strategy that
is presented in this article ...
more >>>
We present a distribution $D$ over inputs in $\{-1,1\}^{2N}$, such that:
(1) There exists a quantum algorithm that makes one (quantum) query to the input, and runs in time $O(\log N)$, that distinguishes between $D$ and the uniform distribution with advantage $\Omega(1/\log N)$.
(2) No Boolean circuit of $\mathrm{quasipoly}(N)$ ...
more >>>
We show what happen to learning if the learner can use NP-oracle.
A consequence of our results we show that
If NP\subset P/poly then the polynomial Hierarchy collapses to ZPP^NP
END_OF_DESCRIPTION
Contact: bshouty@cpsc.ucalgary.ca (Nader Bshouty)
Theoretical computer scientists have been debating the role of
oracles since the 1970's. This paper illustrates both that oracles
can give us nontrivial insights about the barrier problems in
circuit complexity, and that they need not prevent us from trying to
solve those problems.
First, we ... more >>>
Many problems in computer-aided design of highly integrated circuits
(CAD for VLSI) can be transformed to the task of manipulating objects
over finite domains. The efficiency of these operations depends
substantially on the chosen data structures. In the last years,
ordered binary decision diagrams (OBDDs) have ...
more >>>
Groote and Zantema proved that a particular OBDD computation of the pigeonhole formula has an exponential
size and that limited OBDD derivations cannot simulate resolution polynomially. Here we show that any arbitrary OBDD Apply refutation of the pigeonhole formula has an exponential
size: we prove that the size of one ...
more >>>
We consider the following simple algorithm for feedback arc set problem in weighted tournaments --- order the vertices by their weighted indegrees. We show that this algorithm has an approximation guarantee of $5$ if the weights satisfy \textit{probability constraints}
(for any pair of vertices $u$ and $v$, $w_{uv}+w_{vu}=1$). Special cases ...
more >>>
Fine-grained reductions, introduced by Vassilevska-Williams and Williams, preserve any improvement in the known algorithms. These have been used very successfully in relating the exact complexities of a wide range of problems, from NP-complete problems like SAT to important quadratic time solvable problems within P such as Edit Distance. However, until ... more >>>
The present paper generalises results by Tadaki [12] and Calude et al. [1] on oscillation-free partially random infinite strings. Moreover, it shows that oscillation-free partial Chaitin randomness can be separated from scillation-free partial strong Martin-L\"of randomness by $\Pi_{1}^{0}$-definable sets of infinite strings.
more >>>Prediction algorithms assign numbers to individuals that are popularly understood as individual ``probabilities''---what is the probability of 5-year survival after cancer diagnosis?---and which increasingly form the basis for life-altering decisions. Drawing on an understanding of computational indistinguishability developed in complexity theory and cryptography, we introduce Outcome Indistinguishability. Predictors that are ... more >>>
We give new characterizations and lower bounds relating classes in the communication complexity polynomial hierarchy and circuit complexity to limited memory communication models.
We introduce the notion of rectangle overlay complexity of a function $f: \{0,1\}^n\times \{0,1\}^n\to\{0,1\}$. This is a natural combinatorial complexity measure in terms of combinatorial rectangles in ... more >>>
We provide an overview of the doubly-efficient interactive proof systems of Reingold, Rothblum, and Rothblum (STOC, 2016).
Recall that by their result, any set that is decidable in polynomial-time by an algorithm of space complexity $s(n)\leq n^{0.499}$, has a constant-round interactive proof system
in which the prover runs polynomial time ...
more >>>